10-Segment Routing Command Reference

HomeSupportSwitchesS12500R SeriesReference GuidesCommand ReferencesH3C S12500R Switch Router Series Command References(R52xx)-6W10210-Segment Routing Command Reference
01-SR-MPLS commands
Title Size Download
01-SR-MPLS commands 594.46 KB

Contents

SR-MPLS commands· 1

bfd detect-multiplier 1

bfd enable· 1

bfd min-echo-receive-interval 2

bfd min-receive-interval 3

bfd min-transmit-interval 4

display bgp egress-engineering ipv4· 5

display bgp egress-engineering peer-set 7

display bgp segment-routing label-range· 8

display isis segment-routing adjacency· 9

display isis segment-routing global-block· 10

display isis segment-routing prefix-sid-map· 11

display isis segment-routing routing-table· 13

display mpls static-sr-mpls adjacency· 16

display mpls static-sr-mpls ipv6 adjacency· 17

display mpls static-sr-mpls lsp· 19

display mpls static-sr-mpls prefix· 20

display mpls static-sr-mpls ipv6 prefix· 21

display mpls te segment-routing tunnel path· 23

display mpls te tunnel lsp-event 25

display ospf segment-routing adjacency· 27

display ospf segment-routing global-block· 29

display ospf segment-routing prefix-sid-map· 30

display ospf segment-routing routing-table· 32

display segment-routing label-block· 34

display segment-routing mapping-server prefix-sid-map· 35

egress-engineering peer-set 37

fast-reroute microloop-avoidance enable· 38

fast-reroute microloop-avoidance rib-update-delay· 39

fast-reroute ti-lfa· 40

global-block· 41

isis adjacency-sid· 42

isis adjacency-sid weight 44

isis fast-reroute ti-lfa disable· 44

isis label-conflict-check enable· 45

isis prefix-sid· 46

local-block· 47

mapping-server prefix-sid-map· 48

mpls te path-selection adjacency-sid· 49

mpls te static-sr-mpls· 50

mpls te static-sr-mpls wtr 51

ospf adjacency-sid· 52

ospf adjacency-sid weight 53

ospf fast-reroute ti-lfa disable· 54

ospf prefix-sid· 54

peer egress-engineering· 55

peer peer-set 57

sbfd detect-multiplier 58

sbfd enable· 59

sbfd min-receive-interval 59

sbfd min-transmit-interval 60

segment-routing· 61

segment-routing adjacency enable· 62

segment-routing global-block· 62

segment-routing lsp-trigger 63

segment-routing mapping-server advertise-local 64

segment-routing mapping-server receive· 65

segment-routing microloop-avoidance enable· 66

segment-routing microloop-avoidance rib-update-delay· 67

segment-routing mpls· 68

segment-routing sr-prefer 69

static-sr-mpls adjacency· 70

static-sr-mpls ipv6 adjacency· 71

static-sr-mpls lsp· 72

static-sr-mpls prefix· 73

static-sr-mpls ipv6 prefix· 75

tunnel-bfd detect-multiplier 76

tunnel-bfd enable· 77

tunnel-bfd min-echo-receive-interval 78

tunnel-bfd min-receive-interval 79

tunnel-bfd min-transmit-interval 80

 


SR-MPLS commands

bfd detect-multiplier

Use bfd detect-multiplier to set the BFD detection time multiplier for SRLSPs.

Use undo bfd detect-multiplier to restore the default.

Syntax

bfd detect-multiplier value

undo bfd detect-multiplier

Default

The BFD detection time multiplier is not set for SRLSPs. The BFD detection time multiplier set by the bfd multi-hop detect-multiplier command applies.

Views

Segment Routing view

Predefined user roles

network-admin

Parameters

value: Specifies a detection time multiplier, which is the maximum number of consecutive BFD packets that can be discarded. The value range for this argument is 3 to 50.

Usage guidelines

The device sends BFD packets to a peer periodically. If the device does not receive BFD packets from the peer within the actual detection interval, it determines that the session is down. The actual detection interval of the sender is the detection time multiplier of the receiver × the actual sending interval of the receiver.

This command takes effect only on BFD sessions created by the bfd enable command.

Examples

# Set the BFD detection time multiplier to 3 for SRLSPs.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] bfd detect-multiplier 3

Related commands

bfd enable

bfd multi-hop detect-multiplier (High Availability Command Reference)

bfd enable

Use bfd enable to enable BFD for SRLSPs.

Use undo bfd enable to restore the default.

Syntax

bfd enable [ prefix-list prefix-list-name ] [ echo | nil-fec ]

undo bfd enable

Default

BFD for SRLSPs is not enabled.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

prefix-list prefix-list-name: Specifies an IPv4 prefix list by the prefix list name, a case-sensitive string of 1 to 63 characters. The device can create BFD sessions only for the SRLSPs permitted by the specified IPv4 prefix list. If you do not specify an IPv4 prefix list, the device can create BFD sessions for all SRLSPs.

echo: Specifies the BFD echo packet mode. If you do not specify this keyword, the BFD control packet mode is used to verify SRLSP connectivity.

nil-fec: Encapsulates the Nil FEC in MPLS echo request packets when BFD control packet mode is used to detect SRLSPs. In SR to LDP interworking mode, the ingress node (source node) cannot determine whether the LDP LSP is connected to the SRLSP. When the ingress node uses MPLS BFD to detect LSPs, it encapsulates LDP FEC in MPLS echo request packets, which will fail the FEC type verification on the egress node (end-point node). Then, the BFD session will go down. To resolve this issue, specify the nil-fec keyword to enable the ingress node to encapsulate the Nil FEC in MPLS echo request packets. The egress node will not check the FEC type of packets encapsulated with the Nil FEC.

Usage guidelines

This command enables the device to create a BFD session for each primary SRLSP to verify the connectivity of the primary SRLSP. When a primary SRLSP fails, BFD can quickly detect the failure and switches traffic to the backup SRLSP to reduce packet loss.

Before you execute this command, enable MPLS BFD by using the mpls bfd enable command.

If you execute both the bfd enable command and the mpls bfd command for SRLSPs, the mpls bfd command takes effect on the SRLSPs.

Examples

# Enable BFD for SRLSPs.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] bfd enable

Related commands

mpls bfd (for LSP) (MPLS Command Reference)

mpls bfd enable (MPLS Command Reference)

bfd min-echo-receive-interval

Use bfd min-echo-receive-interval to set the minimum interval for receiving BFD echo packets for SRLSP BFD.

Use undo bfd min-echo-receive-interval to restore the default.

Syntax

bfd min-echo-receive-interval interval

undo bfd min-echo-receive-interval

Default

The minimum interval for receiving BFD echo packets is not set for SRLSP BFD. The interval set by the bfd multi-hop min-echo-receive-interval command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

interval: Specifies the minimum interval for receiving BFD echo packets, in milliseconds. The value range for this argument is 3 to 10000.

Usage guidelines

The interval for receiving BFD echo packets is also the interval for sending BFD echo packets. By executing this command, you can control both the receiving interval and sending interval for BFD echo packets.

This command takes effect only on the echo mode BFD sessions created by the bfd enable command.

Examples

# Set the minimum BFD echo packet receiving interval for SRLSP BFD to 450 milliseconds.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] bfd min-echo-receive-interval 450

Related commands

bfd enable

bfd multi-hop min-echo-receive-interval (High Availability Command Reference)

bfd min-receive-interval

Use bfd min-receive-interval to set the minimum BFD packet receiving interval for SRLSP BFD.

Use undo bfd min-receive-interval to restore the default.

Syntax

bfd min-receive-interval interval

undo bfd min-receive-interval

Default

The minimum interval for receiving BFD packets is not set for SRLSP BFD. The interval set by the bfd multi-hop min-receive-interval command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

interval: Specifies the minimum interval for receiving BFD packets, in milliseconds. The value range for this argument is 3 to 10000.

Usage guidelines

Use this command to prevent the packet sending rate of the peer end from exceeding the packet receiving rate of the local end. If the receiving rate is exceeded, the peer end dynamically adjusts the BFD packet transmitting interval to the minimum receiving interval of the local end.

This command takes effect only on BFD sessions created by the bfd enable command.

Examples

# Set the minimum BFD packet receiving interval for SRLSP BFD to 550 milliseconds.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] bfd min-receive-interval 550

Related commands

bfd enable

bfd multi-hop min-receive-interval (High Availability Command Reference)

bfd min-transmit-interval

Use bfd min-transmit-interval to set the minimum BFD packet transmitting interval for SRLSP BFD.

Use undo bfd min-transmit-interval to restore the default.

Syntax

bfd min-transmit-interval interval

undo bfd min-transmit-interval

Default

The minimum interval for transmitting BFD packets is not set for SRLSP BFD. The interval set by the bfd multi-hop min-transmit-interval command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

interval: Specifies the minimum interval for transmitting BFD packets, in milliseconds. The value range is 3 to 10000.

Usage guidelines

Use this command to prevent the BFD packet sending rate from exceeding the packet receiving rate of the peer end.

The actual BFD packet transmitting interval on the local end is the greater value between the following values:

·     Minimum interval for transmitting BFD packets on the local end.

·     Minimum interval for receiving BFD packets on the peer end.

This command takes effect only on BFD sessions created by the bfd enable command.

Examples

# Set the minimum BFD packet transmitting interval for SRLSP BFD to 450 milliseconds.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] bfd min-transmit-interval 450

Related commands

bfd enable

bfd multi-hop min-transmit-interval (High Availability Command Reference)

display bgp egress-engineering ipv4

Use display bgp egress-engineering ipv4 to display BGP EPE information.

Syntax

display bgp [ instance instance-name ] egress-engineering ipv4 [ ipv4-address ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

instance instance-name: Specifies a BGP instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify this option, the command displays information about the default BGP instance.

ipv4-address: Specifies the IPv4 address of an existing peer. If you do not specify this argument, the command displays information about all peers and peer groups.

verbose: Displays detailed BGP EPE information. If you do not specify this keyword, the command displays brief BGP EPE information.

Examples

# Display brief BGP EPE information.

<Sysname> display bgp egress-engineering ipv4

  PeerSet          : 192.168.1.2

  Local AS number  : 1

  Remote AS number : 2

  Local router ID   : 1.1.1.3

  Remote router ID  : 1.1.1.4

  OriginNextHop    : 192.168.1.2

  RelyNextHop      : 192.168.1.2

  Interface        : HGE1/0/1

# Display brief BGP EPE information for a peer.

<Sysname> display bgp egress-engineering ipv4 192.168.1.5

BGP peering segment type: Node-Adjacency

  PeerNodeAdj       : 192.168.1.5

  Local AS number   : 1

  Remote AS number  : 2

  Local router ID   : 1.1.1.3

  Remote router ID  : 1.1.1.5

  OriginalNextHop   : 192.168.1.5

  RelayNextHop      : 192.168.1.5

  Interface         : HGE1/0/5

# Display detailed BGP EPE information for a peer.

<Sysname> display bgp egress-engineering ipv4 1.1.1.1 verbose

BGP peering segment type : Node

  PeerAdj Num              : 2

  PeerNode                 : 1.1.1.1

  Local AS number          : 1

  Remote As number         : 2

  Local router ID          : 1.1.1.3

  Remote router ID         : 1.1.1.4

  Local interface address  : 2.2.2.2

  Remote interface address : 1.1.1.1

  OriginalNextHop          : 1.1.1.1

  RelayNextHop             : 100.0.27.7

  OriginalNextHop          : 1.1.1.1

  RelayNextHop             : 100.0.28.7

  Label                    : 15000

  TunnelPolicy             : abc

  BGP peering segment type : Adjacency

    PeerAdj                  : 100.0.27.7

    Local AS number          : 1

    Remote AS number         : 2

    Local router ID          : 1.1.1.1

    Remote router ID         : 2.2.2.2

    OriginalNextHop          : 100.0.27.7

    RelayNextHop             : 100.0.27.7

    Local interface address  : 100.0.27.2

    Remote interface address : 100.0.27.7

    Interface                : GE1/0/1

    Label                    : 24001

    TunnelPolicy             : abc

  BGP peering segment type : Adjacency

    PeerAdj                  : 100.0.28.7

    Local AS number          : 1

    Remote AS number         : 2

    Local router ID          : 1.1.1.1

    Remote router ID         : 2.2.2.2

    OriginalNextHop          : 100.0.28.7

    RelayNextHop             : 100.0.28.7

    Local interface address  : 100.0.28.2

    Remote interface address : 100.0.28.7

    Interface                : GE1/0/2

    Label                    : 24002

    TunnelPolicy             : abc

Table 1 Command output

Field

Description

BGP peering segment type

Type of the BGP peering segments to the specified peer:

·     Node.

·     Adjacency.

·     Set.

·     Node-Adjacency.

PeerAdj Num

Number of peering adjacencies.

Interface

Interface on which the neighborship is established.

OriginalNextHop

Original next hop.

RelayNextHop

Recursive next hop.

 

display bgp egress-engineering peer-set

Use display bgp egress-engineering peer-set to display BGP EPE peer set information.

Syntax

display bgp [ instance instance-name ] egress-engineering peer-set [ peer-set-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

instance instance-name: Specifies a BGP instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a BGP instance, this command displays BGP EPE peer set information for the default BGP instance.

peer-set-name: Specifies a BGP EPE peer set by its name, a case-sensitive string of 1 to 63 characters. If you do not specify a peer set, this command displays information about all BGP EPE peer sets.

Examples

# Display information about all BGP EPE peer sets.

<Sysname> display bgp egress-engineering peer-set

 

  BGP egress peering segment peer-set: a

  PeerSet label : 2172

  Members: 0

 

  BGP egress peering segment peer-set: b

  PeerSet label : 5555

  Members: 1

         BGP PeerNodeAdj : 3.3.3.3

 

  BGP egress peering segment peer-set: c

  PeerSet label: 65001

  Label        : 65001

  Members: 2

         BGP PeerNode: 1.1.1.1

         BGP PeerAdj : 10.1.1.1

 

  PeerSet name: d

  PeerSet label: 65002

  Members: 2

         BGP PeerNode: 2.2.2.2

         BGP PeerAdj : 11.1.1.1

Table 2 Command output

Field

Description

BGP egress peering segment peer-set

Name of a BGP EPE peer set.

PeerSet label

SID used by the BGP EPE peer set.

Label

SID assigned to the BGP EPE peer set.

Members

Number of peers in the BGP EPE peer set.

BGP PeerNode

Address of the node peer.

BGP PeerAdj

Address of the adjacency peer.

BGP PeerNodeAdj

Address of the node-adjacency peer.

 

display bgp segment-routing label-range

Use display bgp segment-routing label-range to display BGP SR label ranges.

Syntax

display bgp [ instance instance-name ] segment-routing label-range

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

instance instance-name: Specifies a BGP instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify this option, the command displays information about the default BGP instance.

Examples

# Display BGP SR label ranges.

<Sysname> display bgp segment-routing label-range

 

 BGP peering segment labels:

    56000-250000

 Prefix labels:

    16000-55999

display isis segment-routing adjacency

Use display isis segment-routing adjacency to display IS-IS SR adjacency SID information.

Syntax

display isis [ process-id ] segment-routing adjacency [ { member-port | non-member-port } | sid sid-value | vpn-instance vpn-instance-name ] *

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an IS-IS process ID in the range of 1 to 65535. If you do not specify this argument, the command displays SR adjacency SID information about all IS-IS processes.

member-port: Displays SR adjacency SID information on Layer 3 aggregation group member interfaces.

non-member-port: Displays SR adjacency SID information on Layer 3 Ethernet interfaces except aggregation group member interfaces.

sid sid-value: Specifies an adjacency SID value in the range of 15000 to 250000.

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters.

Usage guidelines

If you do not specify the member-port or non-member-port keyword, this command displays SR adjacency SID information on all interfaces.

If you do not specify the sid sid-value option, this command displays information about all IS-IS SR adjacency SIDs.

If you do not specify the vpn-instance vpn-instance-name option, this command displays SR adjacency SID information on the public network.

Examples

# Display SR adjacency SID information about IS-IS process 1.

<Sysname> display isis 1 segment-routing adjacency

 

Adjacency SID: 15020     Type: Non-member-port     Request result: Init

  SystemID           Interface     NextHop         State       ProcessID

  0000.0000.0000.00  HGE1/0/1      2.2.2.2         Inactive    1

Table 3 Command output

Field

Description

Adjacency SID

Adjacency SID value.

Type

 

Type of the adjacency SID assigned to the adjacency link:

·     Member-port—Adjacency SID assigned to a Layer 3 aggregation group member interface.

·     Non-member-port—Adjacency SID assigned to a Layer 3 Ethernet interface that is not an aggregation group member interface.

Request result

Adjacency SID application result:

·     Succeeded—The application succeeded.

·     Conflicting—The adjacency SID is already used.

·     Init—The application is in progress or the adjacency SID allocation feature is not enabled.

·     Out-of-range—The adjacency SID is not the in the range of the SRLB.

SystemID

System ID of the neighbor.

Interface

Interface connected to the neighbor.

Nexthop

Next hop of the adjacency SID.

State

SID status:

·     Active—The SID is effective and is available for use.

·     Inactive—The SID is not effective and is not available for use.

ProcessID

IS-IS process ID.

 

display isis segment-routing global-block

Use display isis segment-routing global-block to display IS-IS SRGB information.

Syntax

display isis segment-routing global-block [ level-1 | level-2 ] [ process-id ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

level-1: Specifies Level-1 SRGB.

level-2: Specifies Level-2 SRGB.

process-id: Specifies an IS-IS process ID in the range of 1 to 65535. If you do not specify this argument, the command displays the SRGBs of all IS-IS processes.

Usage guidelines

If you do not specify the level-1 or level-2 keyword, the command displays information about both the Level-1 SRGB and Level-2 SRGB.

Examples

# Display information about the SRGBs for IS-IS process 1.

<Sysname> display isis segment-routing global-block 1

 

             Segment routing global block information for IS-IS(1)

             -----------------------------------------------------

 

                          Level-1 SRGB

-------------------------

System ID                          Base                Range

-------------------------------------------------------------------------------

0000.0000.0011                     16666               5557

0000.0000.0012                     18012               4001

Table 4 Command output

Field

Description

System ID

System ID of the neighbor.

Base

Minimum label value of the SRGB.

Range

Number of labels in the SRGB.

 

Related commands

segment-routing global-block

display isis segment-routing prefix-sid-map

Use display isis segment-routing prefix-sid-map to display IS-IS SR prefix-SID mappings.

Syntax

display isis segment-routing prefix-sid-map [ active-policy | backup-policy ] [ process-id ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

active-policy: Displays active prefix-SID mappings.

backup-policy: Displays backup prefix-SID mappings.

process-id: Specifies an IS-IS process ID in the range of 1 to 65535. If you do not specify this argument, the command displays information about all IS-IS processes.

verbose: Displays detailed information. If you do not specify this keyword, the command displays brief information.

Usage guidelines

If you do not specify the active-policy or backup-policy keyword, the command displays information about both active and backup prefix-SID mappings.

Examples

# Display active IS-IS SR prefix-SID mappings.

<Sysname> display isis segment-routing prefix-sid-map active-policy

 

         ISIS 1 - Active policy

 

Number of mappings:  5

Prefix               SID index    Range        Flags

2.2.2.2/32           10           10           -

3.3.3.3/32           300          1            -

8.8.8.8/32           600          20           -

11.11.11.11/32       100          10           -

12.12.12.1/32        44           3            -

# Display detailed information about active IS-IS SR prefix-SID mappings.

<Sysname> display isis segment-routing prefix-sid-map active-policy verbose

 

         ISIS 1 - Active policy

 

Number of mappings:  2

Prefix 1.1.1.1 32

    Source        :  Local

    Router ID     :  1010.1020.1030

    Level         :  Not set

    SID index     :  100

    Range         :  1

    Last prefix   :  1.1.1.1/32

    Last SID index:  100

    Flags         :  -

 

Prefix 2.2.2.2 32

    Source        :  Remote

    Router ID     :  1010.1020.1040

    Level         :  L1

    SID index     :  200

    Range         :  1

    Last prefix   :  2.2.2.2/32

    Last SID index:  200

    Flags         :  -

# Display backup IS-IS SR prefix-SID mappings.

<Sysname> display isis segment-routing prefix-sid-map backup-policy

 

         ISIS 1 - Backup policy

 

Number of mappings:  4

Prefix               SID index    Range        Flags

2.2.2.2/32           200          30           -

12.12.12.1/32        44           3            -

8.8.8.8/32           600          20           -

2.2.2.2/32           10           10           -

# Display all IS-IS SR prefix-SID mappings.

<Sysname> display isis segment-routing prefix-sid-map

 

         ISIS 1 – Both active policy and backup policy

 

Number of mappings:  9

 

Prefix               SID index    Range        Flags

2.2.2.2/32           10           10           -

2.2.2.2/32           10           10           -

2.2.2.2/32           200          30           -

3.3.3.3/32           300          1            -

8.8.8.8/32           600          20           -

8.8.8.8/32           600          20           -

11.11.11.11/32       100          10           -

12.12.12.1/32        44           3            -

12.12.12.1/32        44           3            -

Table 5 Command output

Field

Description

SID index

Start SID index value.

Range

Number of consecutive SIDs assigned.

Flags

Mapping flags.

The A flag indicates that the peer specified by the prefix is directly connected to the device.

If no flags are set, this field display a hyphen (-).

Source

Source of the prefix-SID mapping:

·     Local—The mapping is configured on the local device.

·     Remote—The mapping is configured on the remote device.

Router ID

ID of the route advertiser.

Level

Level of the route advertiser:

·     L1—Level-1 IS-IS route.

·     L2—Level-2 IS-IS route.

·     Not set—The route was locally advertised.

 

display isis segment-routing routing-table

Use display isis segment-routing routing-table to display IS-IS SR routing information.

Syntax

display isis segment-routing routing-table [ vpn-instance vpn-instance-name ] [ ip ip-address { mask-length | mask } ] [ flex-algo flex-algo-id ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command displays IS-IS SR routing information on the public network.

ip ip-address { mask-length | mask }: Specifies a destination IP address. The ip-address represents the network address in dotted decimal notation. The mask argument represents the network address mask. The mask-length argument represents the mask length in the range of 0 to 32. If you do not specify a destination address, this command displays IS-IS SR routing information for all destination addresses.

flex-algo flex-algo-id: Specifies a Flex-Algo by its ID, in the range of 128 to 255. If you do not specify a Flex-Algo, this command displays IS-IS SR routing information calculated by Flex-Algo 0 (SPF algorithm).

Examples

# Display IS-IS SR routing information for all destination addresses on the public network.

<Sysname> display isis segment-routing routing-table

 

                      Segment-routing routing-table information

                      -----------------------------------

 

            Flags          : D-Delete                 C-On change list

            Outlabel flags : E-Explicit-Null          I-Implicit-Null

                             N-Normal

 

Total number of routes: 1

 

 Destination: 14.159.100.2/32

 Flags: -/-

 SourceCount: 1

 

       ProcessID  : 1         Active       : True    InLabel      : 17234

       Pref       : 3         SubProtocolID: 1       Metric       : 0

       Route type : Learnt    OutLabel cnt : 1

 

         NextHop   : 0.0.0.0         VrfIndex  : 0      Interface    : GE1/0/1

         OutLabel  : 17234           Selected  : True   OutLabel flag: E

         LDPLabel  : 2173

         BkNextHop : 13.0.0.2        BkVrfIndex: 4      BkInterface  : GE1/0/2

         BkOutLabel: 16021           BkOutLabel flag: N

         BkLDPLabel: 4294967295

Table 6 Command output

Field

Description

Flags

Flags in the routing entry:

·     D—The routing entry has been deleted.

·     C—The routing entry has changed.

·     Hyphen (-)—The routing entry has no change.

SourceCount

Number of route advertisement sources.

ProcessID

IS-IS process ID.

Active

State of the route source:

·     True—The device is directly connected to the route source and has the outgoing label for the route source.

·     False—The device is not directly connected to the route source and does not have the outgoing label for the route source.

InLabel

Incoming label.

Pref

Route preference.

SubProtocolID

Routing subprotocol ID.

Metric

Metric of the route:

Route type

Type of the route:

·     Direct

·     Learnt

·     Redist (redistributed route)

·     Summary

·     Attached

·     Invalid

OutLabel cnt

Number of outgoing labels.

NextHop

Nexthop address.

VrfIndex

VRF index.

Interface

Brief name of the outgoing interface.

OutLabel

Outgoing label.

Selected

Whether the outgoing label for the next hop has been selected:

·     True

·     False

OutLabel flag

Flag of the outgoing label:

·     E—Explicit null label. The upstream neighbor of the SID node must change the SID to the explicit null label before forwarding packets to the SID node.

·     I—Implicit null label. The upstream neighbor of the SID node must change the SID to the implicit null label before forwarding packets to the SID node.

·     N—Normal label.

BkNextHop

Backup next hop address.

BkVrfIndex

Backup VRF index

BkInterface

Brief outgoing interface name.

BkOutLabel

Backup outgoing label.

BkOutLabel flag

Flag of the backup outgoing label:

·     E—Explicit null label. The upstream neighbor of the SID node must change the SID to the explicit null label before forwarding packets to the SID node.

·     I—Implicit null label. The upstream neighbor of the SID node must change the SID to the implicit null label before forwarding packets to the SID node.

·     N—Normal label.

BkLDPLabel

Backup LDP label.

 

display mpls static-sr-mpls adjacency

Use display mpls static-sr-mpls adjacency to display IPv4 static adjacency segment information.

Syntax

display mpls static-sr-mpls [ all | vpn-instance vpn-instance-name ] adjacency [ adjacency-path-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

all: Specifies all IPv4 adjacency segments.

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command displays IPv4 adjacency segment information on the public network.

adjacency-path-name: Specifies an adjacency segment by its name, a case-sensitive string of 1 to 67 characters. If you do not specify this argument, the command displays information about all IPv4 adjacency segments.

Examples

# Display information about static adjacency segments on the public network.

<Sysname> display mpls static-sr-mpls adjacency

Public Instance 

Total number of lSPs: 1

 

Name           : adj-1

Type           : Adjacency

In-Label       : 16

Out-Label      : -

Out-Interface  : HGE1/0/1

Nexthop        : 10.1.1.2

State          : Up

# Display information about IPv4 static adjacency segments in VPN instance vpn1.

<Sysname> display mpls static-sr-mpls vpn-instance vpn2 adjacency

VPN Instance: vpn2

Total number of LSPs: 1

 

Name           : 1

Type           : Adjacency

In-Label       : 40

Out-Label      : -

Out-Interface  : HGE1/0/2

Nexthop        : 30.0.0.3

State          : Up

Table 7 Command output

Field

Description

Name

Name of the adjacency segment.

Type

Information type. The value is fixed at Adjacency, which indicates adjacency segment information.

In-Label

Incoming label.

Out-Label

Outgoing label.

Out-Interface

Output interface.

Nexthop

Next hop address.

State

Status of the adjacency segment:

·     Down.

·     Up.

 

Related commands

static-sr-mpls adjacency

display mpls static-sr-mpls ipv6 adjacency

Use display mpls static-sr-mpls ipv6 adjacency to display IPv6 static adjacency segment information.

Syntax

display mpls static-sr-mpls ipv6 [ all | vpn-instance vpn-instance-name ] adjacency [ adjacency-path-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

all: Specifies all IPv6 adjacency segments.

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command displays IPv6 adjacency segment information on the public network.

adjacency-path-name: Specifies an adjacency segment by its name, a case-sensitive string of 1 to 67 characters. If you do not specify this argument, the command displays information about all IPv6 adjacency segments.

Examples

# Display information about all IPv6 static adjacency segments on the public network.

<Sysname> display mpls static-sr-mpls ipv6 adjacency

Public Instance 

Total number of lSPs: 1

 

Name           : adj-1

Type           : Adjacency

In-Label       : 16

Out-Label      : -

Out-Interface  : HGE1/0/1

Nexthop        : 10::2

State          : Up

# Display information about IPv6 static adjacency segments in VPN instance vpn1.

<Sysname> display mpls static-sr-mpls ipv6 vpn-instance vpn1 adjacency 

VPN Instance: vpn1

Total number of LSPs: 1

 

Name           : 1

Type           : Adjacency

In-Label       : 50

Out-Label      : -

Out-Interface  : HGE1/0/2

Nexthop        : 20::2

State          : Down

Table 8 Command output

Field

Description

Name

Name of the adjacency segment.

Type

Information type. The value is fixed at Adjacency, which indicates adjacency segment information.

In-Label

Incoming label.

Out-Label

Outgoing label.

Out-Interface

Output interface.

Nexthop

Next hop address.

State

Status of the adjacency segment:

·     Down.

·     Up.

 

Related commands

static-sr-mpls ipv6 adjacency

display mpls static-sr-mpls lsp

Use display mpls static-sr-mpls lsp to display static SRLSP information.

Syntax

display mpls static-sr-mpls lsp [ lsp-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

lsp-name: Specifies a static SRLSP by its name, a case-sensitive string of 1 to 67 characters. If you do not specify this argument, the command displays information about all static SRLSPs.

Examples

# Display information about static SRLSP lsp1.

<Sysname> display mpls static-sr-mpls lsp lsp1

Name           : lsp1

Type           : LSP

In-Label       : -

Out-Label      : 60,70,80

Out-Interface  : -

Nexthop        : -

State          : Up

Table 9 Command output

Field

Description

Name

Name of the static SRLSP.

Type

Information type. The value is fixed at LSP, which indicates static SRLSP information.

In-Label

Incoming label.

Out-Label

Outgoing label.

Out-Interface

Output interface.

Nexthop

Next hop address.

State

Status of the static SRLSP:

·     Down.

·     Up.

 

Related commands

static-sr-mpls lsp

display mpls static-sr-mpls prefix

Use display mpls static-sr-mpls prefix to display IPv4 static prefix segment information.

Syntax

display mpls static-sr-mpls [ all | vpn-instance vpn-instance-name ] prefix [ path prefix-path-name | destination ipv4-address [ mask | mask-length ] ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

all: Specifies all IPv4 static prefix segments.

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command displays IPv4 static prefix segment information on the public network.

path prefix-path-name: Specifies a prefix segment by its name, a case-sensitive string of 1 to 67 characters.

destination ipv4-address: Specifies the destination IPv4 address of the prefix segment.

mask: Specifies the mask.

mask-length: Specifies the mask length, in the range of 0 to 32.

Usage guidelines

If you do not specify any parameters, this command displays information about all IPv4 static prefix segments.

Examples

# Display information about all static prefix segments.

<Sysname> display mpls static-sr-mpls prefix

Public Instance 

Total number of lSPs: 1

 

Prefix Name    : prefixname

Destination    : 2.2.2.2/32

In-Label       : 1024

Active         : Yes(1)

Out-Interface  : HGE1/0/1

Nexthop        : 10.0.0.2

Out-Label      : 600000

Status         : Down(No Route)

Out-Interface  : HGE1/0/3

Nexthop        : 12.0.0.2

Out-Label      : 600001

Status         : Down(MPLS not enabled)

Out-Interface  : HGE1/0/3

Nexthop        : 12.0.0.2

Out-Label      : 600001

Status         : down(MPLS not enabled)

# Display information about IPv4 static prefix segments in VPN instance vpn1.

<Sysname> display mpls static-sr-mpls vpn-instance vpn1 prefix

VPN Instance: vpn1

Total number of LSPs: 1

 

Prefix Name    : test

Destination    : 4.4.4.4/32

In-Label       : 16110

Active         : Yes(1)

Out-Interface  : HGE1/0/4

Nexthop        : 20.0.0.2

Out-Label      : 3

Status         : Up

Table 10 Command output

Field

Description

Prefix Name

Name of the prefix segment.

Destination

Destination IP address of the prefix segment.

In-Label

Incoming label of the prefix segment.

Active

Status of the prefix segment:

·     Yes(count)—The prefix segment is active. The value of count represents the number of egresses in up status.

·     No—The prefix segment is inactive.

Out-Label

Outgoing label of the prefix segment.

Status

Status of the egress:

·     down—The egress is inactive. The cause is displayed in brackets, which can be the following:

¡     No Route—The device has no route to reach the destination IP address over the output interface.

¡     MPLS not enabled—MPLS is disabled on the output interface.

¡     No main route—No main route exists.

¡     Static SRLSP not supported—The output interface is a tunnel interface that uses a static SRLSP.

·     up—The egress is active.

·     duplicate—An egress conflict has occurred because the output interface is already used by another prefix segment.

 

Related commands

static-sr-mpls prefix

display mpls static-sr-mpls ipv6 prefix

Use display mpls static-sr-mpls ipv6 prefix to display IPv6 static prefix segment information.

Syntax

display mpls static-sr-mpls ipv6 [ all | vpn-instance vpn-instance-name ] prefix [ path prefix-path-name | destination ipv6-address prefix-length ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

all: Specifies all IPv6 static prefix segments.

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command displays IPv6 static prefix segment information on the public network.

path prefix-path-name: Specifies a prefix segment by its name, a case-sensitive string of 1 to 67 characters.

destination ipv6-address: Specifies the destination IPv6 address of the prefix segment.

prefix-length: Specifies the prefix length, in the range of 0 to 128.

Usage guidelines

If you do not specify any parameters, this command displays information about all IPv6 static prefix segments.

Examples

# Display information about all IPv6 static prefix segments.

<Sysname> display mpls static-sr-mpls ipv6 prefix

Public Instance 

Total number of lSPs: 1

 

Prefix Name    : prefixname

Destination    : 2::2/128

In-Label       : 1024

Active         : Yes(1)

Out-Interface  : HGE1/0/1

Nexthop        : 10::2

Out-Label      : 600000

Status         : up

Out-Interface  : HGE1/0/2

Nexthop        : 11.0.0.2

Out-Label      : 600002

Status         : down(No Route)

Out-Interface  : HGE1/0/3

Nexthop        : 12::2

Out-Label      : 600001

Status         : down(No Mpls)

# Display information about IPv6 static prefix segments in VPN instance vpn1.

<Sysname> display mpls static-sr-mpls ipv6 vpn-instance vpn2 prefix

VPN Instance: vpn2

Total number of LSPs: 2

 

Prefix Name    : 3

Destination    : 4::4/128

In-Label       : 16243

Active         : No

Out-Interface  : -

Nexthop        : 30::3

Out-Label      : 3

Status         : Down(No Route)

Table 11 Command output

Field

Description

Prefix Name

Name of the prefix segment.

Destination

Destination IPv6 address of the prefix segment.

In-Label

Incoming label of the prefix segment.

Active

Status of the prefix segment:

·     Yes(count)—The prefix segment is active. The value of count represents the number of egresses in up status.

·     No—The prefix segment is inactive.

Out-Label

Outgoing label of the prefix segment.

Status

Status of the egress:

·     down—The egress is inactive. The cause is displayed in brackets, which can be No Route or No Mpls. No Route means that the device has no route to reach the destination IP address over the output interface. No Mpls means that MPLS is disabled on the output interface.

·     up—The egress is active.

·     duplicate—An egress conflict has occurred because the output interface is already used by another prefix segment.

 

Related commands

static-sr-mpls ipv6 prefix

display mpls te segment-routing tunnel path

Use display mpls te segment-routing tunnel path to display path information of SR-signaled MPLS TE tunnels (SR-MPLS TE tunnels for short).

Syntax

display mpls te segment-routing tunnel path [ tunnel number ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

tunnel number: Specifies a tunnel interface. The number argument represents the interface number of an existing tunnel interface on the device. If you do not specify a tunnel interface, this command displays path information for all SR-MPLS TE tunnels.

Examples

# Display path information for all SR-MPLS TE tunnels.

<Sysname> display mpls te segment-routing tunnel path

Tunnel name      : Tunnel1

  Main path info : 1.1.1.1/1/61103

  Path state: Active

   Forwarding information:

    HGE1/0/1                 20.0.0.2

    HGE1/0/2                 40.0.0.2

  Hop information:

    Hop 0    Prefix SID 16030       NAI 3.3.3.3

    Hop 1    Adjacency SID 1151     NAI 21.0.0.1, 21.0.0.2

    Hop 2    SID 1140               NAI -

 

  Main Modify path info : 1.1.1.1/1/61105

  Path state: Up

   Forwarding information:

    HGE1/0/1                     10.0.0.2

    HGE1/0/2                     30.0.0.2 (Backup)

  Hop information:

    Hop 0    Prefix SID 16030        NAI 3.3.3.3

    Hop 1    Adjacency SID 1151      NAI 21.0.0.1, 21.0.0.2

 

  Backup path info : 1.1.1.1/1/61104

  Path state: Up

   Forwarding information:

    NID : 268435458

  Hop information:

    Hop 0    Prefix SID 16030       NAI 3.3.3.3

    Hop 1    Adjacency SID 18040    NAI 4.4.4.4, 21.0.0.2

 

  Backup Modify path info : 1.1.1.1/1/61105

   Forwarding information:

    HGE1/0/1                     10.0.0.2

    HGE1/0/2                     30.0.0.2 (Backup)

  Hop information:

    Hop 0    Prefix SID 16030        NAI 3.3.3.3

    Hop 1    Adjacency SID 1151      NAI 21.0.0.1, 21.0.0.2

Table 12 Command output

Field

Description

Tunnel Name

Name of the tunnel interface.

Main Path Info

Primary path information. The value is Ingress LSR ID/Tunnel ID/LSP ID.

Main Modify Path Info

Information about the primary path established by using the make-before-break mechanism.

Backup Path Info

Backup path information.

Backup Modify Path Info

Information about the backup path established by using the make-before-break mechanism.

Path state

Path state:

·     Active—The SRLSP is successfully established and being used for traffic forwarding.

·     Up—The SRLSP is successfully established.

·     Down—The SRLSP is not established or the establishment fails.

Forwarding information

Forwarding information, which includes the following:

·     Outgoing interface and next hop. (Backup) represents the outgoing interface and next hop of the backup path.

·     NID (NHLFE entry index).

Hop information

Information about the hops of the path.

Hop

Hop index.

Binding SID

Binding SID value.

Prefix SID

Prefix SID value.

Adjacency SID

Adjacency SID value.

SID

SID of an unknown type.

NAI

Node or Adjacency Identifier.

For a binding SID, the NAI is displayed as a hyphen (-).

For a prefix SID, the NAI is the node identifier, which is the IP address of the node.

For an adjacency SID, the NAI is the adjacency identifier, which displays the local and remote IP addresses of the link.

If the NAI is not available or is unknown, this field displays a hyphen (-).

display mpls te tunnel lsp-event

Use display mpls te tunnel lsp-event to display SRLSP event information for MPLS TE tunnels.

Syntax

display mpls te tunnel lsp-event { down | switch } [ tunnel number ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

down: Specifies the most recent five SRLSP down events.

switch: Specifies the most recent five SRLSP path switching events.

tunnel number: Specifies an existing MPLS TE tunnel by the tunnel interface number. If you do not specify an MPLS TE tunnel, this command displays information about SRLSP events for all MPLS TE tunnels.

Examples

# Display information about the most recent five SRLSP down events for all MPLS TE tunnels.

<Sysname> display mpls te tunnel lsp-event down

Tunnel ID           : 1

Down Event Number   : 1

  LSP ID: 100        LSP Type: Backup

  Tunnel Signaling  : Segment Routing

  Down Time         : 2020-3-14 14:30:29.734

  Down Info         : No out segment

  Status After Down : Tunnel went down

 

Down Event Number   : 2

  LSP ID: 100        LSP Type: Main

  Tunnel Signaling  : Segment Routing

  Down Time         : 2020-3-14 14:30:28.621

  Down Info         : Configuration changed

    Detailed Info   : mpls te bandwidth

  Status After Down : Tunnel went down

Table 13 Command output

Field

Description

Down Event Number: number

Reverse ordinal number of the SRLSP down event.

Events are displayed from the most recent to the oldest. The most recent event is displayed as number 1.

LSP ID

LSP ID

LSP Type

LSP type:

·     Main—Primary LSP.

·     Backup—Backup LSP.

Tunnel Signaling

Tunnel signaling protocol. The value is Segment Routing.

Down Time

Time when the SRLSP went down.

Down Info

Reason why the SRLSP went down:

·     No out segment.

·     IGP calculated path failed.

·     SRLG check failed.

·     Configuration changed.

·     PCE state recover.

Detailed Info

More detailed information about the down event.

This field is displayed only when the Down Info value is Configuration changed to provide the key configuration commands that caused the SRLSP down event.

Status After Down

Tunnel status after the SRLSP went down:

·     Tunnel went down.

·     Main LSP MBB succeeded.

·     Main LSP failed, switched to backup LSP.

·     Backup LSP failed, hot-standby disabled.

·     Backup LSP MBB succeeded.

·     Backup LSP is same as main LSP.

# Display information about the most recent five SRLSP path switching events for all MPLS TE tunnels.

<Sysname> display mpls te tunnel lsp-event switch

Tunnel ID           : 1

Tunnel Signaling    : Static

Switch Event Number : 1

  Switch Type       : Backup LSP inused

  Switch Reason     : Main LSP down

  Switch Time       : 2021-8-14 14:30:29.734

  Path Detail       :

    Old path        : 16010 - 2371 - 17030

    New path        : 16010 - 18020

Table 14 Command output

Field

Description

Tunnel Signaling

Tunnel signaling protocol. The value is Static or Segment Routing.

Switch Event Number: number

Reverse ordinal number of the SRLSP path switching event.

Events are displayed from the most recent to the oldest. The most recent event is displayed as number 1.

Switch Type

Path switching type:

·     Backup LSP inused—Traffic has been switched to the backup path because the primary path failed.

·     Main LSP recovered—Traffic has been switched back to the primary path because the primary path recovered.

·     Main LSP make-before-break—The primary path underwent MBB because of configuration change or other reasons.

Switch Reason

Reason why a path switching occurs:

·     Main LSP down.

·     Main LSP up.

·     Main LSP BFD down.

·     Main LSP BFD up.

·     Configuration changed.

Switch Time

Time when the SRLSP switched its path.

Path Detail

Detailed information of the path.

Old path

Path before switching, which is displayed as a stack of labels from top to bottom.

New path

Path after switching, which is displayed as a stack of labels from top to bottom.

display ospf segment-routing adjacency

Use display ospf segment-routing adjacency to display OSPF SR adjacency SID information.

Syntax

display ospf [ process-id ] segment-routing adjacency [ sid sid-value ] [ vpn-instance vpn-instance-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an OSPF process ID in the range of 1 to 65535. If you do not specify this argument, the command displays SR adjacency SID information about all OSPF processes.

sid sid-value: Specifies an adjacency SID value in the range of 15000 to 250000. If you do not specify an adjacency SID, this command displays information about all OSPF SR adjacency SIDs.

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command displays SR adjacency SID information on the public network.

Examples

# Display SR adjacency SID information about OSPF process 1.

<Sysname> display ospf 1 segment-routing adjacency

 

Adjacency SID: 15040     Type: Non-member-port Request result: Init

  NbrID           Interface     NextHop         State     ProcessID

  2.2.2.2         HGE1/0/1      10.1.1.1        Inactive  1

Table 15 Command output

Field

Description

Adjacency SID

Adjacency SID value.

Type

Type of the adjacency SID assigned to the adjacency link:

·     Non-member-port—Adjacency SID assigned to a Layer 3 Ethernet interface that is not an aggregation group member interface.

·     Member-port—Adjacency SID assigned to a Layer 3 aggregation group member interface. (Not supported.)

Request result

Adjacency SID application result:

·     Succeeded—The application succeeded.

·     Conflicting—The adjacency SID is already used.

·     Init—The application is in progress or the adjacency SID allocation feature is not enabled.

·     Out-of-range—The adjacency SID is not the in the range of the SRLB.

NbrID

ID of the neighbor.

Interface

Interface connected to the neighbor.

NextHop

Next hop of the adjacency SID.

State

SID status:

·     Active—The SID is effective and is available for use.

·     Inactive—The SID is not effective and is not available for use.

ProcessID

OSPF process ID.

 

display ospf segment-routing global-block

Use display ospf segment-routing global-block to display OSPF SRGB information.

Syntax

display ospf [ process-id ] [ area area-id ] segment-routing global-block

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an OSPF process ID in the range of 1 to 65535. If you do not specify this argument, the command displays the SRGBs of all OSPF processes.

area area-id: Specifies an area by its ID. The area ID can be a value in dotted decimal notation or a decimal value in the range of 0 to 4294967295. If you specify a decimal value, the system automatically transforms it to a value in dotted decimal notation. If you do not specify this option, the command displays the SRGBs of all areas.

Examples

# Display the SRGBs of all OSPF processes.

<Sysname> display ospf segment-routing global-block

 

         OSPF Process 1 with Router ID 1.1.1.1

             Segment Routing Global Block

 

                     Area: 0.0.0.0  

 Router ID       Min SID         Max SID         Total

 1.1.1.1         16000           24000           8001

 2.2.2.2         18000           18999           1000

 3.3.3.3         16000           24000           8001

 4.4.4.4         17000           17999           1000

 5.5.5.5         16000           16999           1000

Table 16 Command output

Field

Description

Router ID

Router ID of the device or the neighbor.

Min SID

Minimum label value of the SRGB.

Max SID

Maximum label value of the SRGB.

Total

Number of labels in the SRGB.

 

Related commands

segment-routing global-block

display ospf segment-routing prefix-sid-map

Use display ospf segment-routing prefix-sid-map to display OSPF SR prefix-SID mappings.

Syntax

display ospf segment-routing prefix-sid-map [ active-policy | backup-policy ] [ process-id ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

active-policy: Displays active prefix-SID mappings.

backup-policy: Displays backup prefix-SID mappings.

process-id: Specifies an OSPF process ID in the range of 1 to 65535. If you do not specify this argument, the command displays information about all OSPF processes.

verbose: Displays detailed information. If you do not specify this keyword, the command displays brief information.

Usage guidelines

If you do not specify the active-policy or backup-policy keyword, the command displays information about both active and backup prefix-SID mappings.

Examples

# Display active OSPF SR prefix-SID mappings.

<Sysname> display ospf segment-routing prefix-sid-map active-policy

 

              OSPF 1 - Active policy

Flags:  IA - Inter-Area, L – Local, R - Remote

 

Number of mappings: 2

 

Prefix               SID index    Range        Flags

1.1.1.11/32          10           10           L/-

1.1.1.22/32          20           20           R/-

# Display detailed information about active OSPF SR prefix-SID mappings.

<Sysname> display ospf segment-routing prefix-sid-map active-policy verbose

 

              OSPF 1 - Active policy

 

Number of mappings: 2

 

Prefix 1.1.1.11

    Source        : Local

    Router ID     : 10.1.1.1

    Area ID       : Not set

    LS ID         : Not set

    SID index     : 10

    Range         : 10

    Last prefix   : 1.1.1.20

    Last SID index: 19

    Flags         : -

Prefix 1.1.1.22

    Source        : Remote

    Router ID     : 10.2.1.1

    Area ID       : 0.0.0.1

    LS ID         : 7.0.0.0

    SID index     : 20

    Range         : 20

    Last prefix   : 1.1.1.41

    Last SID index: 39

    Flags         : -

# Display backup OSPF SR prefix-SID mappings.

<Sysname> display ospf segment-routing prefix-sid-map backup-policy

 

              OSPF 1 - Backup policy

Flags:  IA - Inter-Area, L – Local, R - Remote

 

Number of mappings: 1

 

Prefix               SID index    Range        Flags

1.1.1.33/32          30           30           R/IA

# Display all OSPF SR prefix-SID mappings.

<Sysname> display ospf segment-routing prefix-sid-map

 

   OSPF 1 - Both active policy and backup policy

Flags:  IA - Inter-Area, L – Local, R - Remote

 

Number of mappings: 3

 

Prefix               SID index    Range        Flags

1.1.1.11/32          10           10           L/-

1.1.1.22/32          20           20           R/-

1.1.1.33/32          30           30           R/IA

Table 17 Command output

Field

Description

SID index

Start SID index value.

Range

Number of consecutive SIDs assigned.

Flags

Mapping flags:

·     IA—The prefix was from another area.

·     L—The mapping is a local mapping.

·     R—The mapping is a remote mapping.

If no flags are set, this field display a hyphen (-).

Source

Source of the prefix-SID mapping:

·     Local—The mapping is configured on the local device.

·     Remote—The mapping is configured on the remote device.

Router ID

ID of the route advertiser.

Area ID

Area ID. If the mapping is a local mapping, this field displays Not set.

LS ID

Link state ID. If the mapping is a local mapping, this field displays Not set.

 

display ospf segment-routing routing-table

Use display ospf segment-routing routing-table to display OSPF SR routing information.

Syntax

display ospf segment-routing routing-table [ vpn-instance vpn-instance-name ] [ ip ip-address { mask-length | mask } ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command displays OSPF SR routing information on the public network.

ip ip-address { mask-length | mask }: Specifies a destination IP address. The ip-address represents the network address in dotted decimal notation. The mask argument represents the network address mask. The mask-length argument represents the mask length in the range of 0 to 32. If you do not specify a destination address, this command displays OSPF SR routing information for all destination addresses.

Examples

# Display OSPF SR routing information for all destination addresses on the public network.

<Sysname> display ospf segment-routing routing-table

 

                      Segment-routing routing-table information

                      -----------------------------------

 

            Flags          : D-Delete                 C-On change list

            Outlabel flags : E-Explicit-Null          I-Implicit-Null

                             N-Normal                 P-SR label prefer

 

 Total number of routes: 1

 

 Destination: 1.1.1.1/32

 Flags: -/-/-

 SrouceCount: 1

 

     ProcessID  : 1         Active       : True    InLabel      : 18555

     Pref       : 10        SubProtocolID: 1       Metric       : 1

     Route type : Stub      OutLabel cnt : 1

 

         NextHop  : 12.0.0.2         VrfIndex    : 1           Interface     : GE1/0/1

         OutLabel : 17555            Selected    : True        OutLabel flag : I

         LDPLabel : 4294967295

         BkNextHop : 13.0.0.2        BkVrfIndex  : 4           BkInterface   : GE1/0/2

         BkOutLabel: 16021           BkOutLabel flag: N

         BkLDPLabel: 4294967295

Table 18 Command output

Field

Description

Flags

Flags in the routing entry:

·     D—The routing entry has been deleted.

·     C—The routing entry has changed.

·     Hyphen (-)—The routing entry has no change.

SourceCount

Number of route advertisement sources.

ProcessID

OSPF process ID.

Active

State of the route source:

·     True—The device is directly connected to the route source and has the outgoing label for the route source.

·     False—The device is not directly connected to the route source and does not have the outgoing label for the route source.

InLabel

Incoming label.

Pref

Route preference.

SubProtocolID

Routing subprotocol ID.

Metric

Metric of the route:

Route type

Type of the route:

·     Transit

·     Stub

·     Inter

·     Type1

·     Type2

OutLabel cnt

Number of outgoing labels.

NextHop

Nexthop address.

VrfIndex

VRF index.

Interface

Brief name of the outgoing interface.

OutLabel

Outgoing label.

Selected

Whether the outgoing label for the next hop has been selected:

·     True

·     False

OutLabel flag

Flag of the outgoing label:

·     E—Explicit null label. The upstream neighbor of the SID node must change the SID to the explicit null label before forwarding packets to the SID node.

·     I—Implicit null label. The upstream neighbor of the SID node must change the SID to the implicit null label before forwarding packets to the SID node.

·     N—Normal label.

·     P—SR label preferred.

LDPLabel

LDP label.

BkNextHop

Backup next hop address.

BkVrfIndex

Backup VRF index

BkInterface

Brief outgoing interface name.

BkOutLabel

Backup outgoing label.

BkOutLabel flag

Flag of the backup outgoing label:

·     E—Explicit null label. The upstream neighbor of the SID node must change the SID to the explicit null label before forwarding packets to the SID node.

·     I—Implicit null label. The upstream neighbor of the SID node must change the SID to the implicit null label before forwarding packets to the SID node.

·     N—Normal label.

·     P—SR label preferred.

BkLDPLabel

Backup LDP outgoing label.

 

display segment-routing label-block

Use display segment-routing label-block to display SR label block information.

Syntax

display segment-routing label–block [ protocol { isis | ospf } ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

protocol: Specifies a protocol. If you do not specify this keyword, the command displays SR label block information about all protocols.

isis: Displays IS-IS SR label block information.

ospf: Displays OSPF SR label block information.

Examples

# Display SR label block information about all protocols.

<Sysname> display segment-routing label-block

Default label block:

  SRLB: 15000-15999

  SRGB: 16000-55999

Configurate label block:

  SRLB: 200000-210000

  SRGB: 16000-17000

 

Type      Protocol    Process-ID   Label range     State

SRLB      Global      -            200000-210000   Active

SRGB      Global      -            16000-17000     Active

Table 19 Command output

Field

Description

Type

Label block type, SRGB or SRLB.

Protocol

Protocol to which the label block belongs:

·     ISIS—A IS-IS process.

·     OSPF—An OSPF process.

·     Global—The label block is the global SRGB or SRLB, which is configured in segment routing view..

Process-ID

ID of the protocol process that owns the label block. If label block is the global SRGB or SRLB, this field displays a hyphen (-).

State

Whether the label block is available for use:

·     Active—The label block is available for use.

·     Inactive—The label block is not available for use.

 

display segment-routing mapping-server prefix-sid-map

Use display segment-routing mapping-server prefix-sid-map to display prefix-SID mappings.

Syntax

display segment-routing mapping-server prefix-sid-map [ ip-address mask-length | verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

ip-address: Specifies an IPv4 address prefix in dotted decimal notation.

mask-length: Specifies the mask length, in the range of 1 to 32.

verbose: Displays detailed information about all configured prefix-SID mappings.

Usage guidelines

If you do not specify any parameters, this command displays brief information about all configured prefix-SID mappings.

Examples

# Display the prefix-SID mapping for prefix 1.1.1.1.

<Sysname> display segment-routing mapping-server prefix-sid-map 1.1.1.1 32

                    SRMS mappings

Prefix              SID index       Flags

1.1.1.1/32          10              A

# Display all configured prefix-SID mappings.

<Sysname> display segment-routing mapping-server prefix-sid-map

                    SRMS mappings

 

Number of mappings:  2

 

Prefix              SID index   Range       Flags

1.1.1.1/32          10          100         A

2.2.2.2/32          256         520         -

# Display detailed information about all configured prefix-SID mappings.

<Sysname> display segment-routing mapping-server prefix-sid-map verbose

                    SRMS mappings

 

Number of mappings:  2

 

Prefix 1.1.1.1/32

  SID index     :  10

  Range         :  100

  Last prefix   :  1.1.1.100/24

  Last SID index:  109

  Flags         :  A

 

Prefix 2.2.2.2/32

  SID index     :  256

  Range         :  520

  Last prefix   :  2.2.4.9/24

  Last SID index:  775

  Flags         :  -

Table 20 Command output

Field

Description

SID index

Start SID index value.

Range

Number of consecutive SIDs assigned.

Flags

Mapping flags.

The A flag indicates that the peer specified by the prefix is directly connected to the device.

If no flags are set, this field display a hyphen (-).

Last Prefix

Final prefix.

Last SID index

SID assigned to the final prefix.

 

egress-engineering peer-set

Use egress-engineering peer-set to create a BGP EPE peer set.

Use undo egress-engineering peer-set to delete a BGP EPE peer set.

Syntax

egress-engineering peer-set peer-set-name [ label label-value ] [ link-down relate-bfd-state ]

undo egress-engineering peer-set peer-set-name

Default

No BGP EPE peer sets exist.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

peer-set-name: Specifies a BGP EPE peer set name, a case-sensitive string of 1 to 63 characters.

label label-value: Specifies a SID for the BGP EPE peer set. The value range for the label-value argument is 16 to 250000. If you do not specify a SID, this command dynamically assigns a SID for the BGP EPE peer set.

link-down relate-bfd-state: Enables BGP-EPE to collaborate with SBFD when a link between ASs fails. The node configured with BGP-EPE will send an SBFD response packet to the source node of an SR-MPLS TE policy. After receiving the SBFD response packet, the source node sets the SBFD session detecting the backup path to down and triggers traffic switchover. If you do not specify this parameter, BGP-EPE will not collaborate with SBFD when a link between ASs fails. This parameter must work together with the sr-policy sbfd enable command in SR-TE view or the sbfd command in SR-MPLS TE policy view.

Usage guidelines

BGP EPE assigns BGP peering SIDs to segments across ASs. The device sends BGP peering SIDs to the controller through BGP-LS extensions. The controller orchestrates IGP SIDs and BGP peering SIDs for inter-AS forwarding over optimal paths.

You can add multiple BGP peers into a BGP EPE peer set and assign a Peer-Set-SID to the set. A Peer-Set-SID corresponds to multiple outgoing interfaces.

Examples

# Create a BGP EPE peer set named bgpepe, and assign SID 5555 to the set.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] egress-engineering peer-set bgpepe label 5555

Related commands

peer egress-engineering

peer peer-set

sbfd

sr-policy sbfd enable

fast-reroute microloop-avoidance enable

Use fast-reroute microloop-avoidance enable to enable FRR microloop avoidance.

Use undo fast-reroute microloop-avoidance enable to disable FRR microloop avoidance.

Syntax

In IS-IS IPv4 unicast address family view:

fast-reroute microloop-avoidance enable [ level-1 | level-2 ]

undo fast-reroute microloop-avoidance enable [ level-1 | level-2 ]

In OSPF view:

fast-reroute microloop-avoidance enable

undo fast-reroute microloop-avoidance enable

Default

FRR microloop avoidance is disabled.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Parameters

level-1: Specifies FRR microloop avoidance for IS-IS Level-1.

level-2: Specifies FRR microloop avoidance for IS-IS Level-2.

Usage guidelines

Use this command only on the source node.

On an network configured with TI-LFA FRR, if a node or link fails, traffic will be switched to the backup path calculated by TI-LFA. However, if a device along the backup path has not finished route convergence, traffic might be looped between the device and the source node. (The source node refers to the node prior to the node or link that failed.) The loop will exist until the device finishes route convergence.

To resolve this problem, configure microloop avoidance on the source node enabled with TI-LFA FRR. Then, when a node or link on the optimal path fails, traffic will be switched to the backup path calculated by TI-LFA. The source node starts a delay timer for other devices to finish route convergence. After the delay timer expires, the source node installs the converged path to the FIB and switches traffic from the TI-LFA-calculated backup path to the converged path.

If you configure both FRR microloop avoidance and SR microloop avoidance, both timers are started and FRR microloop avoidance takes effect.

·     The value of the delay timer of FRR microloop avoidance is greater than or equal to the value of the delay timer of SR microloop avoidance, the device switches to the converged path immediately after the delay timer of the latter expires.

·     The value of the delay timer of FRR microloop avoidance is smaller than or equal to the value of the delay timer of SR microloop avoidance, the device switches to the converged path after the delay timer of the former expires.

If you do not specify the level-1 or level-2 keyword, the command enables or disables FRR microloop avoidance on all IS-IS levels.

Examples

# Enable FRR microloop avoidance for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] fast-reroute microloop-avoidance enable

# Enable FRR microloop avoidance for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] fast-reroute microloop-avoidance enable

Related commands

fast-reroute microloop-avoidance rib-update-delay

segment-routing microloop-avoidance enable

fast-reroute microloop-avoidance rib-update-delay

Use fast-reroute microloop-avoidance rib-update-delay to set the FRR microloop avoidance RIB-update-delay time.

Use undo fast-reroute microloop-avoidance rib-update-delay to restore the default.

Syntax

In IS-IS IPv4 unicast address family view:

fast-reroute microloop-avoidance rib-update-delay delay-time [ level-1 | level-2 ]

undo fast-reroute microloop-avoidance rib-update-delay [ level-1 | level-2 ]

In OSPF view:

fast-reroute microloop-avoidance rib-update-delay delay-time

undo fast-reroute microloop-avoidance rib-update-delay

Default

The FRR microloop avoidance RIB-update-delay time is 5000 ms.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Parameters

delay-time: Specifies the FRR microloop avoidance RIB-update-delay time in milliseconds. The value range is 1 to 60000.

level-1: Specifies the FRR microloop avoidance RIB-update-delay time for IS-IS Level-1.

level-2: Specifies the FRR microloop avoidance RIB-update-delay time for IS-IS Level-2.

Usage guidelines

Use this command only on the source node.

If you do not specify the level-1 or level-2 keyword, the command sets the FRR microloop avoidance RIB-update-delay time for all IS-IS levels.

Examples

# Set the FRR microloop avoidance RIB-update-delay time to 6000 ms for Level-1 of IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] fast-reroute microloop-avoidance rib-update-delay 6000 level-1

# Set the FRR microloop avoidance RIB-update-delay time to 6000 ms for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] fast-reroute microloop-avoidance rib-update-delay 6000

Related commands

fast-reroute microloop-avoidance

fast-reroute ti-lfa

Use fast-reroute ti-lfa to enable Topology-Independent Loop-Free Alternate Fast Re-Route (TI-LFA FRR).

Use fast-reroute ti-lfa to disable TI-LFA FRR.

Syntax

In IS-IS IPv4 unicast address family view:

fast-reroute ti-lfa [ per-prefix ] [ route-policy route-policy-name | host ] [ level-1 | level-2 ]

undo fast-reroute ti-lfa [ level-1 | level-2 ]

In OSPF view:

fast-reroute ti-lfa [ per-prefix ] [ route-policy route-policy-name | host ]

undo fast-reroute ti-lfa

Default

TI-LFA FRR is disabled.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Parameters

level-1: Specifies TI-LFA FRR for IS-IS Level-1.

level-2: Specifies TI-LFA FRR for IS-IS Level-2.

per-prefix: Calculates backup information for each advertising source of a route. Specify this keyword only if routes are advertised by multiple sources. If you do not specify this keyword, the device calculates backup information for each route.

route-policy route-policy-name: Enables TI-LFA FRR for prefixes identified by the routing policy. The route-policy-name argument specifies a routing policy by its name, a case-sensitive string of 1 to 63 characters.

host: Enables TI-LFA for host routes.

Usage guidelines

TI-LFA FRR provides link and node protection for SR tunnels. When a link or node fails, TI-LFA FRR switches the traffic to the backup path to ensure continuous data forwarding.

Before configuring TI-LFA FRR, you must execute the following commands in IS-IS IPv4 unicast address family view or OSPF view:

·     segment-routing mpls

·     fast-reroute lfa

TI-LFA FRR takes effect only after you enable LFA FRR.

TI-LFA FRR operates in a level only after you enable LFA FRR for the level.

If you do not specify the level-1 or level-2 keyword, the command enables or disables TI-LFA FRR for all IS-IS levels.

If you do not specify the route-policy route-policy-name option or the host keyword, the device calculates backup information for all routes.

Examples

# Enable TI-LFA FRR for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] fast-reroute ti-lfa

# Enable TI-LFA FRR for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] fast-reroute ti-lfa

Related commands

fast-reroute (Layer 3IP Routing Command Reference)

route-policy (Layer 3IP Routing Command Reference)

segment-routing mpls

global-block

Use global-block to configure the global MPLS SRGB.

Use undo global-block to restore the default.

Syntax

global-block { minimum-value maximum-value | name name }

undo global-block

Default

The label range for the global MPLS SRGB is 16000 to 55999. The lables in this range cannot be assigned to other protocols or SRLBs.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

minimum-value: Specifies the minimum label value. The value is 16000.

maximum-value: Specifies the maximum label value. The value is 55999.

name name: Specifies an MPLS label block by its name, a case-sensitive string of 1 to 127 characters. The specified MPLS label block must already exist. An MPLS label block is configured by using the mpls label-block command. For more information, see basic MPLS commands in MPLS Command Reference.

Usage guidelines

The global MPLS SRGB is used for static prefix segments and BGP prefix SIDs. If no MPLS SRGB is configured for a protocol process, the process uses the global MPLS SRGB.

If you have configured prefix SIDs when you configure the global MPLS SRGB, the global MPLS SRGB must contain the configured prefix SIDs.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Configure the global MPLS SRGB to be from 200000 to 220000.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] global-block 200000 220000

Related commands

mpls label-block (MPLS Command Reference)

segment-routing global-block

isis adjacency-sid

Use isis adjacency-sid to assign an IS-IS adjacency SID to an IS-IS adjacency.

Use undo isis adjacency-sid to reclaim an IS-IS adjacency SID.

Syntax

isis adjacency-sid { absolute absolute-value | index index-value } [ nexthop nexthop-address ]

undo isis adjacency-sid { absolute absolute-value | index index-value }

Default

An IS-IS adjacency does not have an adjacency SID.

Views

Interface view

Predefined user roles

network-admin

Parameters

absolute absolute-value: Specifies an absolute value as the adjacency SID. The value range for the absolute-value argument is 15000 to 250000.

index index-value: Specifies an adjacency SID index value in the range of 0 to 235000.

nexthop nexthop-address: Specifies a next hop by its IP address. If the network type of the interface is broadcast, you must specify this option. If the network type of the interface is P2P, you cannot specify this option.

Usage guidelines

After you enable SR-MPLS adjacency label allocation, the device randomly allocates adjacency SIDs to the links to its IGP neighbors. If the link to an IGP neighbor flaps, the adjacency SID of the link keeps changing. For a link to always use the same adjacency SID, use this command to assign a specific adjacency SID to the link.

You can assign adjacency SID by using absolute values or index values. If you use index values, the adjacency SID of a link is the base value of the SRLB plus the index value for the link.

Before assigning adjacency SIDs, execute the display mpls label command to display the usage status of the labels that you want to assign as adjacency SIDs. Make sure the labels are in Idle state. A label that is not in Idle state is being used by another protocol. If you assign it to a link as an adjacency SID, the adjacency SID is not available even if the status of the label changes to Idle later. To use the adjacency SID, you must remove the adjacency SID assignment and assign the adjacency SID again.

Before executing the isis adjacency-sid command on an interface, you must complete the following tasks:

·     Enable IS-IS on the interface.

·     Execute the segment-routing mpls and segment-routing adjacency enable commands.

If you execute the isis adjacency-sid command multiple times on an interface of the P2P network type, the most recent configuration takes effect.

If you execute the isis adjacency-sid command multiple times on an interface of the broadcast network type, the effective configuration varies depending on how you specify the next hop address:

·     If you specify a different next hop address each time, all configurations take effect.

·     If you specify the same next hop address each time, the most recent configuration takes effect.

To change the network type of an interface, execute the isis circuit-type p2p command before executing the isis adjacency-sid command on the interface. To change the network type of an interface after assigning an adjacency SID to the interface, you must remove the assignment first.

If you execute this command on an interface after enabling SR-MPLS adjacency label allocation for an IGP, the interface prefers the assigned adjacency SID.

Examples

# Set the absolute value of the adjacency SID to 20000 on interface HundredGigE 1/0/1. Specify 1.1.1.1 as the next hop.

<Sysname> system-view

[Sysname] interface hundredgige 1/0/1

[Sysname-HundredGigE1/0/1] isis enable 1

[Sysname-HundredGigE1/0/1] isis adjacency-sid absolute 20000 nexthop 1.1.1.1

Related commands

display mpls label (MPLS Command Reference)

isis circuit-type p2p (Layer 3IP Routing Command Reference)

isis enable (Layer 3IP Routing Command Reference)

segment-routing adjacency enable

segment-routing mpls

isis adjacency-sid weight

Use isis adjacency-sid weight to set the load balancing weight for an IS-IS adjacency.

Use undo isis adjacency-sid weight to restore the default.

Syntax

isis adjacency-sid weight weight-value

undo isis adjacency-sid weight

Default

The load balancing weight for an IS-IS adjacency is not set.

Views

Interface view

Predefined user roles

network-admin

Parameters

weight-value: Specifies the load balancing weight for the IS-IS adjacency, in the range of 1 to 254.

Usage guidelines

If you use the isis adjacency-sid command to assign the same IS-IS adjacency SID to the IS-IS adjacencies on multiple interfaces, multiple forwarding paths are available for adjacency SID-based forwarding. By default, packets are assigned to the adjacencies evenly. If the adjacencies have different bandwidths, you can set the load balancing weights for the adjacencies to avoid congestion. The traffic ratio on an adjacency will be its load balancing weight divided by the total load balancing weights of the adjacencies with the same IS-IS adjacency SID.

Examples

# Set the load balancing weight to 10 for the IS-IS adjacency SID on interface HundredGigE 1/0/1.

<Sysname> system-view

[Sysname] interface hundredgige 1/0/1

[Sysname-HundredGigE1/0/1] isis adjacency-sid weight 10

Related commands

isis adjacency-sid

isis fast-reroute ti-lfa disable

Use isis fast-reroute ti-lfa disable to disable an IS-IS interface from participating in TI-LFA calculation.

Use undo isis fast-reroute ti-lfa disable to enable an IS-IS interface to participate in TI-LFA calculation.

Syntax

isis fast-reroute ti-lfa disable [ level-1 | level-2 ]

undo isis fast-reroute ti-lfa disable [ level-1 | level-2 ]

Default

An IS-IS interface participates in TI-LFA calculation.

Views

Interface view

Predefined user roles

network-admin

Parameters

level-1: Specifies TI-LFA calculation on IS-IS Level-1.

level-2: Specifies TI-LFA calculation on IS-IS Level-2.

Usage guidelines

Disable the output interface to the primary next hop from participating in TI-LFA calculation.

If you do not specify the level-1 or level-2 keyword, the command disables or enables the interface to participate in TI-LFA calculation in any level.

Examples

# Disable interface HundredGigE 1/0/1 from participating in TI-LFA calculation.

<Sysname> system-view

[Sysname] interface hundredgige 1/0/1

[Sysname-HundredGigE1/0/1] isis enable 1

[Sysname-HundredGigE1/0/1] isis fast-reroute ti-lfa disable

Related commands

fast-reroute ti-lfa

isis label-conflict-check enable

Use isis label-conflict-check enable to enable checking for IS-IS prefix SID conflicts.

Use undo isis label-conflict-check enable to disable checking for IS-IS prefix SID conflicts.

Syntax

isis label-conflict-check enable

undo isis label-conflict-check enable

Default

IS-IS prefix SID conflicts checking is disabled.

Views

System view

Predefined user roles

network-admin

Usage guidelines

In an SR-MPLS network where multiple downstream devices advertise prefix SIDs in inform of index values to the device through IS-IS routes, the device determines SID conflicts in routes in the following cases:

·     Different IP prefixes with the same prefix SID.

·     Different prefix SIDs for the same IP prefix.

·     Duplicate IP prefix and duplicate prefix SID.

By default, the device does not check SID conflicts when it receives the previous routes and process the routes as follows:

·     When the device receives IS-IS routes that contain the same IP prefix and different prefix SIDs, it does not generate label forwarding entries for those routes.

·     When the device receives IS-IS routes that contain the same prefix SID and the same or different IP prefixes, the device generates a label forwarding entry for the last of those routes.

If SID conflicts are ignored, the device might not able to detect faults on the network and might generate incorrect label forwarding entries.

After SID conflict checking is enabled, the device checks the SID conflicts and if any conflicts are detected in routes, it does not generate label forwarding entries for the routes.

Examples

# Enable checking for IS-IS prefix SID conflicts.

<Sysname> system-view

[Sysname] isis label-conflict-check enable

Related commands

isis prefix-sid

isis prefix-sid

Use isis prefix-sid to configure an IS-IS prefix SID.

Use undo isis prefix-sid to restore the default.

Syntax

isis [ process-id process-id ] prefix-sid [ algorithm algorithm-id ] { absolute absolute-value | index index-value } [ n-flag-clear | { explicit-null | no-php } ] *

undo isis [ process-id process-id ] prefix-sid [ algorithm algorithm-id ]

Default

No IS-IS prefix SID is configured.

Views

Loopback interface view

Predefined user roles

network-admin

Parameters

process-id process-id: Specifies an IS-IS process by its process ID in the range of 1 to 65535.

algorithm algorithm-id: Specifies a Flex-Algo for the prefix SID. The algorithm-id argument represents the Flex-Algo ID, in the range of 128 to 255. If you do not specify a Flex-Algo, IS-IS uses the SPF algorithm to calculate the shortest path to the prefix SID.

absolute absolute-value: Specifies an absolute value as the prefix SID. The value range for the absolute-value argument is 15000 to 250000.

index index-value: Specifies an index value in the range of 0 to 235000.

n-flag-clear: Sets the Node-SID flag bit of the prefix SID to 0 to use the prefix SID for a group of SR nodes. If you do not specify this keyword, the flag bit is 1 and the prefix SID is used for a single SR node.

explicit-null: Sets the Explicit-null flag bit of the prefix SID to 1. This setting requires that the upstream neighbor uses an explicit null label to replace the prefix SID. If you do not specify this keyword, the flag bit is 0 and the upstream neighbor continues to forward the packet based on the prefix SID. For more information about the explicit null label, see MPLS basics configuration in MPLS Configuration Guide.

no-php: Sets the P-flag bit of the prefix SID to 1 so the penultimate hop does not pop out the SID. If you do not specify this keyword, the P-flag bit is 0 and the penultimate hop pops out the SID.

Usage guidelines

An absolute value used as the prefix SID takes effect only if it is in the SRGB of the node.

If you specify an index value, the sum of the index value and the SRGB base value is used as the prefix SID. The prefix SID takes effect only if it is in the SRGB of the node.

To use a prefix SID for a group of SR nodes in anycast scenarios, specify the n-flag-clear keyword to set the Node-SID flag bit of the prefix SID to 0.

To configure an IS-IS prefix SID, you must enable an IS-IS process on the loopback interface.

If you execute this command on an interface multiple times, the most recent configuration takes effect.

Examples

# Set the IS-IS prefix SID index value to 20 on loopback interface 1.

<Sysname> system-view

[Sysname] interface loopback 1

[Sysname-LoopBack1] isis enable 1

[Sysname-LoopBack1] isis prefix-sid index 20

local-block

Use local-block to configure the SRLB.

Use undo local-block to restore the default.

Syntax

local-block { minimum-value maximum-value | name name }

undo local-block

Default

The label range for the SRLB is 15000 to 15999. The labels in this range  cannot be assigned to other protocols or SRGBs.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

minimum-value: Specifies the minimum label value. The value is 15000.

maximum-value: Specifies the maximum label value. The value is 15999.

name name: Specifies an MPLS label block by its name, a case-sensitive string of 1 to 127 characters. The specified MPLS label block must already exist. An MPLS label block is configured by using the mpls label-block command. For more information, see basic MPLS commands in MPLS Command Reference.

Usage guidelines

The segment routing local block (SRLB) is the range of local labels dedicated for SR-MPLS adjacency SIDs.

Before executing this command, use the display mpls label command to display MPLS label usage information. Make sure that all labels in the specified range are idle. If a label in the range is not idle, the MPLS SRLB takes effect only after you save the running configuration and reboot the device.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Configure the SRLB to be from 200000 to 220000.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] local-block 200000 220000

Related commands

display mpls label

display mpls summary (MPLS Command Reference)

mpls label-block (MPLS Command Reference)

mapping-server prefix-sid-map

Use mapping-server prefix-sid-map to configure a prefix-SID mapping.

Use undo mapping-server prefix-sid-map to delete a prefix-SID mapping.

Syntax

mapping-server prefix-sid-map ip-address mask-length start-value [ range range-value ] [ attached ]

undo mapping-server prefix-sid-map ip-address mask-length

Default

No prefix-SID mappings exist.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

ip-address: Specifies an IPv4 address prefix to be mapped or specifies the start IP prefix for a range of prefix-SID mappings, in dotted decimal notation.

mask-length: Specifies the mask length, in the range of 1 to 32.

start-value: Specifies the index value of the SID to be mapped to the specified prefix, or specifies the index value of the start SID for a range of prefix-SID mappings. The value range for this argument is 0 to 234999.

range range-value: Specifies the number of prefix-SID mappings, in the range of 1 to 235000. Specify this option if you want to configure more than one mapping by using a single command. The system creates the specified number of mappings, starting from the start IP prefix and SID index value. The increment step for the prefix and SID index value is 1.

attached: Specifies that the specified prefixes represent local networks.

Usage guidelines

The specified prefixes must not belong to any existing prefix-SID mappings.

Before you configure prefix-SID mappings in bulk, plan the number of mappings. Make sure there are enough mappings to use.

If you specify a value greater than 65535 for the range-value argument, the prefix-SID mappings cannot be advertised through IS-IS or OSPF.

Examples

# Map prefix 1.1.1.1/32 to SID index value 100.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] mapping-server prefix-sid-map 1.1.1.1 32 100

# Configure two prefix-SID mappings, starting from prefix 10.1.1.1/32 and SID index value 200.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] mapping-server prefix-sid-map 10.1.1.1 32 200 range 2

In the first mapping, the prefix is 10.1.1.1/32 and the SID is 200. In the second mapping, the prefix is 10.1.1.2/32 and the SID is 201.

mpls te path-selection adjacency-sid

Use mpls te path-selection adjacency-sid to configure a tunnel interface to perform CSPF calculation strictly based on adjacency SID information when establishing an SRLSP for an MPLS TE tunnel.

Use undo mpls te path-selection adjacency-sid to restore the default.

Syntax

mpls te path-selection adjacency-sid

undo mpls te path-selection adjacency-sid

Default

A tunnel interface does not perform CSPF calculation strictly based on adjacency SID information when establishing an SRLSP for an MPLS TE tunnel.

Views

Tunnel interface view

Predefined user roles

network-admin

Usage guidelines

This command takes effect only on an MPLS TE tunnel established by using SR.

Before executing this command, you must enable SR-MPLS and SR adjacency SID allocation on each node that the TE tunnel might traverse.

If an MPLS TE tunnel is already established when you execute this command, the tunnel interface calculates a new SRLSP based on adjacency SID information.

·     If the new SRLSP is successfully established, the tunnel interface removes the old SRLSP and uses the new SRLSP to establish a new MPLS TE tunnel.

·     If the new SRLSP fails to be established, the tunnel interface continues to use the old SRLSP.

Examples

# Configure a tunnel interface to perform CSPF calculation strictly based on adjacency SID information when establishing an SRLSP for an MPLS TE tunnel.

<Sysname> system-view

[Sysname] interface tunnel 1 mode mpls-te

[Sysname-Tunnel1] mpls te path-selection adjacency-sid

mpls te static-sr-mpls

Use mpls te static-sr-mpls to bind a static SRLSP to an MPLS TE tunnel interface.

Use undo mpls te static-sr-mpls to unbind a static SRLSP from an MPLS TE tunnel interface.

Syntax

mpls te static-sr-mpls lsp-name [ backup ]

undo mpls te static-sr-mpls lsp-name

Default

An MPLS TE tunnel interface does not use any static SRLSPs.

Views

Tunnel interface view

Predefined user roles

network-admin

Parameters

lsp-name: Specifies a static SRLSP by its name, a case-sensitive string of 1 to 67 characters. The specified static SRLSP must be already created by using the static-sr-mpls lsp command.

backup: Specifies the backup static SRLSP. If you do not specify this keyword, this command specifies the main static SRLSP.

Usage guidelines

This command takes effect only if you have configured the mpls te signaling static command in tunnel interface view.

Execute this command only on the ingress node of a static SRLSP.

If you execute the mpls te static-sr-mpls and mpls te static-cr-lsp commands on a device, only the mpls te static-cr-lsp command takes effect. For the mpls te static-sr-mpls command to take effect, execute the undo mpls te static-cr-lsp command.

Examples

# Bind static SRLSP static-sr-3 to MPLS TE tunnel interface 0.

<Sysname> system-view

[Sysname] interface tunnel 0 mode mpls-te

[Sysname-Tunnel0] mpls te static-sr-mpls static-sr-3

Related commands

display mpls te tunnel-interface (MPLS Command Reference)

mpls te signaling (MPLS Command Reference)

mpls te static-sr-mpls wtr

static-sr-mpls lsp

mpls te static-sr-mpls wtr

Use mpls te static-sr-mpls wtr to configure the static SRLSP switchback delay time.

Use undo mpls te static-sr-mpls wtr to restore the default.

Syntax

mpls te static-sr-mpls wtr delay-time

undo mpls te static-sr-mpls wtr

Default

The static SRLSP switchback delay is 10 seconds.

Views

Tunnel interface view

Predefined user roles

network-admin

Parameters

delay-time: Static SRLSP switchback delay time, in the range of 0 to 2592000 seconds. As a best practice to avoid packet loss during the switchback, set the switchback delay to more than 10 seconds.

Usage guidelines

The switchback delay time refers to the period of time that a TE tunnel waits before it performs a backup-to-primary static SRLSP switchover when the primary static SRLSP recovers.

It might happen that the upstream primary static SRLSP becomes up before the downstream primary static CRLSP becomes up. In this case, if the upstream node switches traffic back to the primary SRLSP, the traffic will be dropped until the primary SRLSP on the downstream node becomes up. Setting a proper switchback delay can resolve this issue.

Examples

# Set the static SRLSP switchback delay to 30 seconds.

<Sysname> system-view

[Sysname] interface tunnel 0 mode mpls-te

[Sysname-Tunnel0] mpls te static-sr-mpls wtr 30

Related commands

mpls te static-sr-mpls

ospf adjacency-sid

Use ospf adjacency-sid to assign an OSPF adjacency SID to an OSPF adjacency.

Use undo ospf adjacency-sid to reclaim an OSPF adjacency SID.

Syntax

ospf adjacency-sid { absolute absolute-value | index index-value } [ nexthop nexthop-address ]

undo ospf adjacency-sid { absolute absolute-value | index index-value } [ nexthop nexthop-address ]

Default

An OSPF adjacency does not have an adjacency SID.

Views

Interface view

Predefined user roles

network-admin

Parameters

absolute absolute-value: Specifies an absolute value as the adjacency SID. The value range for the absolute-value argument is 15000 to 250000.

index index-value: Specifies an adjacency SID index value as the adjacency SID. The value range for the index-value argument is 0 to 235000.

nexthop nexthop-address: Specifies a next hop by its IP address. If the network type of the interface is not P2P, you must specify this option. If the network type of the interface is P2P, you cannot specify this option.

Usage guidelines

After you enable OSPF adjacency SID allocation, the device randomly allocates adjacency SIDs to the links to its OSPF neighbors. If the link to an OSPF neighbor flaps, the adjacency SID of the link keeps changing. For a link to always use the same adjacency SID, use this command to assign a specific adjacency SID to the link.

You can assign adjacency SIDs by using absolute values or index values. If you If you use index values, the adjacency SID of a link is the base value of the SRLB plus the index value for the link.

Before assigning adjacency SIDs, execute the display mpls label command to display the usage status of the labels that you want to assign as adjacency SIDs. Make sure the labels are in Idle state. A label that is not in Idle state is being used by another protocol. If you assign it to a link as an adjacency SID, the adjacency SID is not available even if the status of the label changes to Idle later. To use the adjacency SID, you must remove the adjacency SID assignment and assign the adjacency SID again.

The ospf adjacency-sid command takes effect only after you execute the segment-routing mpls and segment-routing adjacency enable commands.

You can assign the same adjacency SID on multiple interfaces.

If you execute the ospf adjacency-sid command multiple times on an interface of the P2P network type, the most recent configuration takes effect.

If you execute the ospf adjacency-sid command multiple times on an interface of the broadcast network type, the effective configuration varies depending on how you specify the next hop address:

·     If you specify a different next hop address each time, all configurations take effect.

·     If you specify the same next hop address each time, the most recent configuration takes effect.

To change the network type of an interface, execute the ospf network-type command.

Examples

# Set the absolute value of the adjacency ID to 20000 on interface HundredGigE 1/0/1. Specify 1.1.1.1 as the next hop.

<Sysname> system-view

[Sysname] interface hundredgige 1/0/1

[Sysname-HundredGigE1/0/1] ospf adjacency-sid absolute 20000 nexthop 1.1.1.1

Related commands

display mpls label (MPLS Command Reference)

ospf network-type (Layer 3IP Routing Command Reference)

segment-routing adjacency enable

segment-routing mpls

ospf adjacency-sid weight

Use ospf adjacency-sid weight to set the load balancing weight for an OSPF adjacency.

Use undo ospf adjacency-sid weight to restore the default.

Syntax

ospf adjacency-sid weight weight-value

undo ospf adjacency-sid weight

Default

The load balancing weight for an OSPF adjacency is not set.

Views

Interface view

Predefined user roles

network-admin

Parameters

weight-value: Specifies the load balancing weight for the OSPF adjacency, in the range of 1 to 254.

Usage guidelines

If you use the ospf adjacency-sid command to assign the same OSPF adjacency SID to the OSPF adjacencies on multiple interfaces, multiple forwarding paths are available for adjacency SID-based forwarding. By default, packets are assigned to the adjacencies evenly. If the adjacencies have different bandwidths, you can set the load balancing weights for the adjacencies to avoid congestion. The traffic ratio on an adjacency will be its load balancing weight divided by the total load balancing weights of the adjacencies with the same OSPF adjacency SID.

Examples

# Set the load balancing weight to 1 for the OSPF adjacency SID on interface HundredGigE 1/0/1.

<Sysname> system-view

[Sysname] interface hundredgige 1/0/1

[Sysname-HundredGigE1/0/1] ospf adjacency-sid weight 1

Related commands

ospf adjacency-sid

 

ospf fast-reroute ti-lfa disable

Use ospf fast-reroute ti-lfa disable to disable an OSPF interface from participating in TI-LFA calculation.

Use undo ospf fast-reroute ti-lfa disable to enable an OSPF interface to participate in TI-LFA calculation.

Syntax

ospf fast-reroute ti-lfa disable

undo ospf fast-reroute ti-lfa disable

Default

An OSPF interface participates in TI-LFA calculation.

Views

Interface view

Predefined user roles

network-admin

Usage guidelines

On the source node, the route's output interface to the primary next hop might not be on the backup path calculated by TI-LFA. Disable TI-LFA on the interface to prevent it from participating in TI-LFA calculation.

Examples

# Disable interface HundredGigE 1/0/1 from participating in TI-LFA calculation.  

<Sysname> system-view

[Sysname] interface hundredgige 1/0/1

[Sysname-HundredGigE1/0/1] ospf fast-reroute ti-lfa disable

Related commands

fast-reroute ti-lfa (OSPF view)

ospf prefix-sid

Use ospf prefix-sid to configure an OSPF prefix SID.

Use undo ospf prefix-sid to restore the default.

Syntax

ospf process-id prefix-sid { absolute absolute-value | index index-value } [ n-flag-clear | { explicit-null | no-php } ] *

undo ospf process-id prefix-sid

Default

No OSPF prefix SID is configured.

Views

Loopback interface view

Predefined user roles

network-admin

Parameters

process-id: Specifies an OSPF process ID in the range of 1 to 65535.

absolute absolute-value: Specifies an absolute value as the prefix SID. The value range for the absolute-value argument is 15000 to 250000.

index index-value: Specifies an index value as the prefix SID. The value range for the index-value argument is 0 to 235000.

n-flag-clear: Sets the Node-SID flag bit of the prefix SID to 0 to use the prefix SID for a group of SR nodes. If you do not specify this keyword, the flag bit is 1 and the prefix SID is used for a single SR node.

explicit-null: Sets the Explicit-null flag bit of the prefix SID to 1. This setting requires that the upstream neighbor uses an explicit null label to replace the prefix SID. If you do not specify this keyword, the flag bit is 0 and the upstream neighbor continues to forward the packet based on the prefix SID. For more information about the explicit null label, see MPLS basics configuration in MPLS Configuration Guide.

no-php: Sets the P-flag bit of the prefix SID to 1 so the penultimate hop does not pop out the SID. If you do not specify this keyword, the P-flag bit is 0 and the penultimate hop pops out the SID.

Usage guidelines

An absolute value used as the prefix SID takes effect only if it is in the SRGB of the node.

If you specify an index value, the sum of the index value and the SRGB base value is used as the prefix SID. The prefix SID takes effect only if it is in the SRGB of the node.

To use a prefix SID for a group of SR nodes in anycast scenarios, specify the n-flag-clear keyword to set the Node-SID flag bit of the prefix SID to 0.

The configured OSPF prefix SID takes effect only if the OSPF process enabled on the loopback interface is the same as the OSPF process associated with the prefix SID.

If you execute this command on an interface multiple times, the most recent configuration takes effect.

Examples

# Set the OSPF prefix SID index value to 20 on loopback interface 1.

<Sysname> system-view

[Sysname] interface loopback 1

[Sysname-LoopBack1] ospf 1 prefix-sid index 20

peer egress-engineering

Use peer egress-engineering to enable BGP EPE for a peer or peer group and specify a routing policy to assign a label (SID) to the peer or peer group.

Use undo peer egress-engineering to restore the default for a peer or peer group.

Syntax

peer { group-name | ipv4-address [ mask-length ] } egress-engineering [ adjacency | node-adjacency ] [ label label-value | route-policy policy-name ] [ link-down relate-bfd-state ]

peer { group-name | ipv4-address [ mask-length ] } egress-engineering [ set ] [ label label-value | route-policy policy-name ]

undo peer { group-name | ipv4-address [ mask-length ] } egress-engineering

Default

BGP EPE is disabled.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

group-name: Specifies an existing peer group by its name, a case-sensitive string of 1 to 47 characters.

ipv4-address: Specifies the IPv4 address of an existing peer.

mask-length: Specifies the mask length, in the range of 0 to 32. This argument and the ipv4-address argument together specify a subnet. If you specify this argument, the command applies to dynamic peers on the specified subnet.

adjacency: Assigns a Peer-Adjacency-SID.         

node-adjacency: Assigns both a Peer-Node-SID and a Peer-Adjacency-SID.

set: Assigns a Peer-Set-SID.

label label-value: Specifies the SID value, in the range of 16 to 250000.

route-policy route-policy-name: Specifies a routing policy by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the device assigns SIDs to neighbors randomly.

link-down relate-bfd-state: Enables BGP-EPE to collaborate with SBFD when a link between ASs fails. The node configured with BGP-EPE will send an SBFD response packet to the source node of an SR-MPLS TE policy. After receiving the SBFD response packet, the source node sets the SBFD session detecting the backup path to down and triggers traffic switchover. If you do not specify this parameter, BGP-EPE will not collaborate with SBFD when a link between ASs fails. This parameter must work together with the sr-policy sbfd enable command in SR-TE view or the sbfd command in SR-MPLS TE policy view.

Usage guidelines

If you do not specify the adjacency, node-adjacency, or set keyword, the device assigns a Peer-Node-SID.

You can use the apply label-value command to assign an SID value but cannot use the apply label-index command to assign a label index value .

You cannot assign the same peer node SID or peer adjacency SID to multiple BGP peers or peer groups.

You can assign the same set type SIDs to BGP peers or peer groups.

You can use if-match interface as a filtering condition only when you assign peer adjacency SIDs to BGP peers or peer groups.

Before assigning BGP-EPE SIDs, execute the display mpls label command to display the usage status of the labels that you want to assign as BGP-EPE SIDs. Make sure the labels are in Idle state. A label that is not in Idle state is being used by another protocol. If you assign it to a peer or peer group as a BGP-EPE SID, the BGP-EPE SID is not available even if the status of the label changes to Idle later. To use the BGP-EPE SID, you must remove the BGP-EPE SID assignment and assign the BGP-EPE SID again.

Examples

# Enable BGP EPE for peer 1.1.1.1 and assign a Peer-Node-SID to the peer.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] peer 1.1.1.1 egress-engineering

Related commands

display mpls label (MPLS Command Reference)

sbfd

sr-policy sbfd enable

peer peer-set

Use peer peer-set to add a peer or peer group to a BGP EPE peer set.

Use undo peer peer-set to remove a peer or peer group from its BGP EPE peer set.

Syntax

peer { group-name | ipv4-address [ mask-length ] } peer-set peer-set-name

undo peer { group-name | ipv4-address [ mask-length ] } peer-set

Default

A peer or peer group does not belong to a BGP EPE peer set.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

group-name: Specifies an existing peer group by its name, a case-sensitive string of 1 to 47 characters.

ipv4-address: Specifies an existing peer by its IPv4 address.

mask-length: Specifies a mask length in the range of 0 to 32. The IPv4 address and the mask length together specify a network segment. This command applies to the dynamic peers in the specified network segment.

peer-set-name: Specifies the name of the BGP EPE peer set to which the specified BGP peers will be added. The peer set name is a case-sensitive string of 1 to 63 characters.

Usage guidelines

Before you execute this command, make sure BGP EPE is enabled.

If a peer or peer group is assigned a Peer-Set-SID (by using the peer egress-engineering set command), the peer or peer group cannot be added to a BGP EPE peer set, and vice versa.

Examples

# Add peer 10.1.1.1 to BGP EPE peer set abc.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] peer 10.1.1.1 peer-set abc

Related commands

egress-engineering peer-set

peer egress-engineering

sbfd detect-multiplier

Use sbfd detect-multiplier to set the SBFD detection time multiplier for SRLSPs.

Use undo sbfd detect-multiplier to restore the default.

Syntax

sbfd detect-multiplier value

undo sbfd detect-multiplier

Default

The SBFD detection time multiplier is not set for SRLSPs. The BFD detection time multiplier set by the bfd multi-hop detect-multiplier command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

value: Specifies a detection time multiplier, which is the maximum number of consecutive SBFD packets that can be discarded. The value range for this argument is 3 to 50.

Usage guidelines

The device sends SBFD packets to a peer periodically. If the device does not receive SBFD packets from the peer within the actual detection interval, it determines that the session is down. The actual detection interval of the sender is the detection time multiplier of the receiver × the actual sending interval of the receiver.

This command takes effect only on SBFD sessions created by the sbfd enable command.

Examples

# Set the SBFD detection time multiplier to 3 for SRLSPs.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] sbfd enable

[Sysname-segment-routing] sbfd detect-multiplier 3

Related commands

bfd multi-hop detect-multiplier (High Availability Command Reference)

sbfd enable

sbfd enable

Use sbfd enable to enable SBFD for SRLSPs.

Use undo sbfd enable to restore the default.

Syntax

sbfd enable [ prefix-list prefix-list-name ]

undo sbfd enable

Default

SBFD for SRLSPs is not enabled.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

prefix-list prefix-list-name: Specifies an IPv4 prefix list by the prefix list name, a case-sensitive string of 1 to 63 characters. The device can create SBFD sessions only for the SRLSPs permitted by the specified IPv4 prefix list. If you do not specify an IPv4 prefix list, the device can create SBFD sessions for all SRLSPs.

Usage guidelines

This command enables the device to create an SBFD session for each primary SRLSP to verify the connectivity of the primary SRLSP. When a primary SRLSP fails, SBFD can quickly detect the failure and switches traffic to the backup SRLSP to reduce packet loss.

Before you execute this command, enable MPLS BFD by using the mpls bfd enable command.

After you execute this command, the local end uses the destination address of an SRLSP as the remote discriminator to establish an SBFD session for the SRLSP. Make sure you specify the local discriminator of the SBFD session on the remote end as the SRLSP's destination address by using the sbfd local-discriminator command.

If you execute both the sbfd enable command and the mpls sbfd command for SRLSPs, the mpls sbfd command takes effect on the SRLSPs.

Examples

# Enable SBFD for SRLSPs.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] sbfd enable

Related commands

mpls bfd enable (MPLS Command Reference)

mpls sbfd (for LSP) (MPLS Command Reference)

sbfd local-discriminator (MPLS Command Reference)

sbfd min-receive-interval

Use sbfd min-receive-interval to set the minimum interval for receiving SBFD packets for SRLSP SBFD.

Use undo sbfd min-receive-interval to restore the default.

Syntax

sbfd min-receive-interval interval

undo sbfd min-receive-interval

Default

The minimum interval for receiving SBFD packets is not set for SRLSP SBFD. The interval set by the bfd multi-hop min-receive-interval command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

interval: Specifies the minimum interval for receiving SBFD packets, in milliseconds. The value range is 3 to 10000.

Usage guidelines

Use this command to prevent the packet sending rate of the peer end from exceeding the packet receiving rate of the local end. If the receiving rate is exceeded, the peer end dynamically adjusts the BFD packet transmitting interval to the minimum receiving interval of the local end.

This command takes effect only on SBFD sessions created by the sbfd enable command.

Examples

# Set the minimum SBFD packet receiving interval for SRLSP SBFD to 450 milliseconds.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] sbfd enable

[Sysname-segment-routing] sbfd min-receive-interval 450

Related commands

bfd multi-hop min-receive-interval (High Availability Command Reference)

sbfd enable

sbfd min-transmit-interval

Use sbfd min-transmit-interval to set the minimum interval for transmitting SBFD packets for SRLSP SBFD.

Use undo sbfd min-transmit-interval to restore the default.

Syntax

sbfd min-transmit-interval interval

undo sbfd min-transmit-interval

Default

The minimum interval for transmitting SBFD packets is not set for SRLSP SBFD. The interval set by the bfd multi-hop min-transmit-interval command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

interval: Specifies the minimum interval for transmitting SBFD packets, in milliseconds. The value range is 3 to 10000.

Usage guidelines

Use this command to prevent the SBFD packet sending rate from exceeding the packet receiving rate of the peer end.

The actual SBFD packet transmitting interval on the local end is the greater value between the following values:

·     Minimum interval for transmitting SBFD packets on the local end.

·     Minimum interval for receiving SBFD packets on the peer end.

This command takes effect only on SBFD sessions created by the sbfd enable command.

Examples

# Set the minimum SBFD packet transmitting interval for SRLSP SBFD to 450 milliseconds.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] sbfd enable

[Sysname-segment-routing] sbfd min-transmit-interval 450

Related commands

bfd multi-hop min-transmit-interval (High Availability Command Reference)

sbfd enable

segment-routing

Use segment-routing to enable segment routing and enter segment routing view.

Use undo segment-routing to disable segment routing.

Syntax

segment-routing

undo segment-routing

Default

Segment routing is disabled.

Views

System view

Predefined user roles

network-admin

Usage guidelines

To configure the Segment Routing Mapping Server (SRMS) features, you must execute this command on the SRMS. The SRMS is an entity that advertises prefix-SID mappings in an IGP. By deploying an SRMS, you can allocate SIDs to devices that do not support SR-MPLS, allowing for SR-MPLS and LDP interworking.

Examples

# Enable segment routing and enter segment routing view.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing]

segment-routing adjacency enable

Use segment-routing adjacency enable to enable SR-MPLS adjacency label allocation.

Use undo segment-routing adjacency enable to disable SR-MPLS adjacency label allocation.

Syntax

segment-routing adjacency enable

undo segment-routing adjacency enable

Default

SR-MPLS adjacency label allocation is disabled.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Usage guidelines

For this command to take effect, you must enable MPLS SR.

Examples

# Enable SR-MPLS adjacency label allocation for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] segment-routing adjacency enable

# Enable SR-MPLS adjacency SID allocation for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] segment-routing adjacency enable

Related commands

segment-routing mpls

segment-routing global-block

Use segment-routing global-block to configure the MPLS SRGB.

Use undo segment-routing global-block to restore the default.

Syntax

segment-routing global-block minimum-value maximum-value

undo segment-routing global-block

Default

IS-IS and OSPF uses the global MPLS SRGB configured in segment routing view.

Views

IS-IS view

OSPF view

Predefined user roles

network-admin

Parameters

minimum-value: Specifies the minimum label value, in the range of 15000 to 249999.

maximum-value: Specifies the maximum label value, in the range of 15001 to 250000.

Usage guidelines

The global MPLS SRGB is used for static prefix segments and BGP prefix SIDs. If no MPLS SRGB is configured for a protocol process, the process uses the global MPLS SRGB.

If you have configured prefix SIDs when you configure the SRGB, the SRGB must contain the configured prefix SIDs.

In the following situations, the configured SRGB takes effect after a device reboot:

·     The SRGB contains a label that is already used by another protocol. For example, the SRGB contains a label that is already used by LDP.

·     The SRGB overlaps with the label range of another protocol.

Examples

# Configure the MPLS SRGB to be from 17000 to 22000 for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] segment-routing global-block 17000 22000

# Configure the MPLS SRGB to be from 17000 to 22000 for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] segment-routing global-block 17000 22000

Related commands

global-block

segment-routing lsp-trigger

Use segment-routing lsp-trigger to configure the SRLSP establishment triggering policy.

Use undo segment-routing lsp-trigger to restore the default.

Syntax

segment-routing lsp-trigger { host | none | prefix-list prefix-name }

undo segment-routing lsp-trigger

Default

The device allows all FECs to trigger SRLSP establishment.

Views

OSPF view

Predefined user roles

network-admin

Parameters

host: Allows host FECs to trigger SRLSP establishment.

none: Allows no FECs to trigger SRLSP establishment.

prefix-list prefix-name: Allows FECs permitted by a prefix list to trigger SRLSP establishment. The prefix-name argument is a case-sensitive string of 1 to 63 characters.

Usage guidelines

To save system resources, you can configure the SRLSP establishment triggering policy to allow only certain FECs to trigger SRLSP establishment.

Examples

# Configure the SRLSP establishment triggering policy to allow only host FECs to trigger SRLSP establishment.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] segment-routing lsp-trigger host

segment-routing mapping-server advertise-local

Use segment-routing mapping-server advertise-local to enable advertisement of locally configured prefix-SID mappings.

Use undo segment-routing mapping-server advertise-local to disable advertisement of locally configured prefix-SID mappings.

Syntax

segment-routing mapping-server advertise-local

undo segment-routing mapping-server advertise-local

Default

Advertisement is disabled for locally configured prefix-SID mappings.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Usage guidelines

In an SR to LDP interworking scenario, you must execute this command on the SRMS so the device advertises locally configured prefix-SID mappings to neighbors.

Examples

# Enable IS-IS to advertise locally configured prefix-SID mappings for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] segment-routing mapping-server advertise-local

# Enable OSPF to advertise locally configured prefix-SID mappings for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] segment-routing mapping-server advertise-local

Related commands

mapping-server prefix-sid-map

segment-routing mapping-server receive

Use segment-routing mapping-server receive to enable reception of prefix-SID mappings.

Use undo segment-routing mapping-server receive to disable reception of prefix-SID mappings.

Syntax

segment-routing mapping-server receive

undo segment-routing mapping-server receive

Default

Reception of prefix-SID mappings is enabled.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Usage guidelines

In an SR to LDP interworking scenario, you must execute this command on the SRMCs so they can identify the prefix-SID mappings advertised by the SRMS.

Examples

# Disable reception of prefix-SID mappings for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] undo segment-routing mapping-server receive

# Disable reception of prefix-SID mappings for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] undo segment-routing mapping-server receive

Related commands

mapping-server prefix-sid-map

mapping-server prefix-sid-map advertise-local

segment-routing microloop-avoidance enable

Use segment-routing microloop-avoidance enable to enable SR microloop avoidance.

Use undo segment-routing microloop-avoidance enable to disable SR microloop avoidance.

Syntax

In IS-IS IPv4 unicast address family view:

segment-routing microloop-avoidance enable [ level-1 | level-2 ]

undo segment-routing microloop-avoidance enable [ level-1 | level-2 ]

In OSPF view:

segment-routing microloop-avoidance enable

undo segment-routing microloop-avoidance enable

Default

SR microloop avoidance is disabled.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Parameters

level-1: Specifies SR microloop avoidance for IS-IS Level-1.

level-2: Specifies SR microloop avoidance for IS-IS Level-2.

Usage guidelines

After a network failure occurs or recovers, route convergence occurs on relevant network devices. Because of non-simultaneous convergence on network devices, microloops might be formed. After you configure SR microloop avoidance, the devices will forward traffic along the specified path before route convergence is finished on all the relevant network devices. Because the forwarding path is independent of route convergence, microloops are avoided.

The specific process is as follows:

·     After a network failure occurs, the device installs the calculated forwarding path to the FIB and switches to the forwarding path after a delay time. During the delay time, the device still uses the TI-LFA FRR backup path.

·     After a network failure recovers, the device calculates an active path and a backup path with a SID. During the delay time, the device still uses the backup path.

If you configure both FRR microloop avoidance and SR microloop avoidance, both timers are started and FRR microloop avoidance takes effect.

·     The value of the delay timer of FRR microloop avoidance is greater than or equal to the value of the delay timer of SR microloop avoidance, the device switches to the converged path immediately after the delay timer of the latter expires.

The value of the delay timer of FRR microloop avoidance is smaller than or equal to the value of the delay timer of SR microloop avoidance, the device switches to the converged path after the delay timer of the former expires.

If you do not specify the level-1 or level-2 keyword, the segment-routing microloop-avoidance enable command enables or disables SR microloop avoidance on all IS-IS levels.

Examples

# Enable SR microloop avoidance for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] segment-routing microloop-avoidance enable

# Enable SR microloop avoidance for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] segment-routing microloop-avoidance enable

Related commands

fast-reroute microloop-avoidance enable

segment-routing microloop-avoidance rib-update-delay

segment-routing microloop-avoidance rib-update-delay

Use segment-routing microloop-avoidance rib-update-delay to set the SR microloop avoidance RIB-update-delay time.

Use undo segment-routing microloop-avoidance rib-update-delay to restore the default.

Syntax

In IS-IS IPv4 unicast address family view:

segment-routing microloop-avoidance rib-update-delay delay-time [ level-1 | level-2 ]

undo segment-routing microloop-avoidance rib-update-delay [ level-1 | level-2 ]

In OSPF view:

segment-routing microloop-avoidance rib-update-delay delay-time

undo segment-routing microloop-avoidance rib-update-delay

Default

The SR microloop avoidance RIB-update-delay time is 5000 ms.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Parameters

delay-time: Specifies the SR microloop avoidance RIB-update-delay time in milliseconds. The value range is 1 to 60000.

level-1: Specifies the SR microloop avoidance RIB-update-delay time for IS-IS Level-1.

level-2: Specifies the SR microloop avoidance RIB-update-delay time for IS-IS Level-2.

Usage guidelines

To leave sufficient time for IGP to finish route convergence, specify a proper value for the SR microloop avoidance RIB-update-delay timer. Before the timer expires, failure relevant devices will forward traffic along the specified path. After the timer expires, traffic will traverse the usual path.

If you do not specify the level-1 or level-2 keyword, this command sets the SR microloop avoidance RIB-update-delay time for all IS-IS levels.

Examples

# Set the SR microloop avoidance RIB-update-delay time to 6000 ms for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] segment-routing microloop-avoidance rib-update-delay 6000

# Set the SR microloop avoidance RIB-update-delay time to 6000 ms for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] segment-routing microloop-avoidance rib-update-delay 6000

Related commands

segment-routing microloop-avoidance enable

segment-routing mpls

Use segment-routing mpls to enable MPLS SR.

Use undo segment-routing mpls to disable MPLS SR.

Syntax

segment-routing mpls

undo segment-routing mpls

Default

SR-MPLS is disabled.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Usage guidelines

For SR-MPLS to take effect, perform the following tasks before configuring the IGP to support MPLS SR:

·     If the IGP is IS-IS, set the cost style to wide, compatible, or wide-compatible. For more information about the cost style, see IS-IS configuration in Layer 3IP Routing Configuration Guide.

·     If the IGP is OSPF, enable opaque LSA reception and advertisement capability. For more information about the capability, see OSPF configuration in Layer 3IP Routing Configuration Guide.

Examples

# Enable SR-MPLS in IS-IS IPv4 unicast address family view of IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] cost-style wide

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] segment-routing mpls

# Enable SR-MPLS for OSPF process 1.

<Sysname> system-view

[Sysname] ospf 1

[Sysname-ospf-1] segment-routing mpls

Related commands

cost-style (Layer 3IP Routing Command Reference)

opaque-capability enable (Layer 3IP Routing Command Reference)

segment-routing sr-prefer

Use segment-routing sr-prefer to configure the device to prefer SRLSPs in traffic forwarding.

Use undo segment-routing sr-prefer to restore the default.

Syntax

segment-routing sr-prefer [ prefix-list prefix-list-name ]

undo segment-routing sr-prefer

Default

The device prefers LDP LSPs in traffic forwarding.

Views

IS-IS IPv4 unicast address family view

OSPF view

Predefined user roles

network-admin

Parameters

prefix-list prefix-list-name: Specifies an IP address prefix list by its name, a case-sensitive string of 1 to 63 characters. The device preferentially uses SRLSPs to forward traffic destined for addresses on the prefix list, and preferentially uses LDP LSPs to forward traffic destined for other addresses. If you do not specify an IP address prefix list, the device preferentially uses SRLSPs to forward all traffic.

Usage guidelines

This command determines whether the device prefers SRLSPs or LDP LSPs when both SRLSPs and LDP LSPs are available for traffic forwarding.

This command takes effect only when SR-MPLS is enabled and the SRLSPs use prefix SIDs.

Examples

# Configure the device to preferentially use SRLSPs established by IS-IS to forward all traffic.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] segment-routing sr-prefer

# Configure the device to preferentially use SRLSPs established by OSPF to forward traffic that is identified by prefix list 8.

<Sysname> system-view

[Sysname] ip prefix-list 8 permit 4.4.4.4 32

[Sysname] ospf 1

[Sysname-ospf-1] segment-routing sr-prefer prefix-list 8

Related commands

ip prefix-list (Layer 3IP Routing Command Reference)

segment-routing mpls

static-sr-mpls adjacency

Use static-sr-mpls adjacency to configure an IPv4 adjacency segment for static SR.

Use undo static-sr-mpls adjacency to delete an IPv4 adjacency segment.

Syntax

static-sr-mpls [ vpn-instance vpn-instance-name ] adjacency adjacency-path-name in-label label-value { nexthop ip-address | outgoing-interface interface-type interface-number }

undo static-sr-mpls [ vpn-instance vpn-instance-name ] adjacency adjacency-path-name

Default

No IPv4 adjacency segments exist.

Views

System view

Predefined user roles

network-admin

Parameters

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command configures an IPv4 adjacency segment for static SR on the public network.

adjacency-path-name: Specifies the adjacency segment name, a case-sensitive string of 1 to 67 characters.

in-label label-value: Specifies the incoming label, in the range of 16 to 14999.

nexthop ip-address: Specifies the next hop IPv4 address.

outgoing-interface interface-type interface-number: Specifies an output interface by its type and number. The output interface must be a P2P interface.

Usage guidelines

Execute this command on a node of a static SRLSP to assign an incoming label to an IPv4 next hop or output interface. After the node receives a packet with that incoming label, it will forward the packet through the corresponding next hop or output interface.

Execute this command on all nodes of a static SRLSP.

If you specify the next hop IPv4 address, make sure the following requirements are met:

·     The device has a route to reach the next hop IPv4 address.

·     MPLS is enabled on the output interface of the route.

If you specify an output interface, make sure the following requirements are met:

·     The interface is up.

·     The interface can receive direct routes.

·     MPLS is enabled on the interface.

On a device, the incoming label specified by this command must be different than other static LSPs and static CRLSPs. If not, this command fails to be executed.

Examples

# Configure adjacency segment adj1, and specify the incoming label as 100 and the next hop IPv4 address as 12.2.1.2.

<Sysname> system-view

[Sysname] static-sr-mpls adjacency adj1 in-label 100 nexthop 12.2.1.2

Related commands

static-sr-mpls lsp

display mpls static-sr-mpls adjacency

static-sr-mpls ipv6 adjacency

Use static-sr-mpls ipv6 adjacency to configure an IPv6 adjacency segment for static SR.

Use undo static-sr-mpls ipv6 adjacency to delete an IPv6 adjacency segment.

Syntax

static-sr-mpls ipv6 [ vpn-instance vpn-instance-name ] adjacency adjacency-path-name in-label label-value { nexthop ipv6-address | outgoing-interface interface-type interface-number } *

undo static-sr-mpls ipv6 [ vpn-instance vpn-instance-name ] adjacency adjacency-path-name

Default

No IPv6 adjacency segments exist.

Views

System view

Predefined user roles

network-admin

Parameters

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command configures an IPv6 adjacency segment for static SR on the public network.

adjacency-path-name: Specifies the adjacency segment name, a case-sensitive string of 1 to 67 characters.

in-label label-value: Specifies the incoming label, in the range of 16 to 14999.

nexthop ipv6-address: Specifies the next hop IPv6 address.

outgoing-interface interface-type interface-number: Specifies an output interface by its type and number. The output interface must be a P2P interface.

Usage guidelines

Execute this command on a node of a static SRLSP to assign an incoming label to an IPv6 next hop or output interface. After the node receives a packet with that incoming label, it will forward the packet through the corresponding next hop or output interface.

Execute this command on all nodes of a static SRLSP.

If you specify the next hop IPv6 address, make sure the following requirements are met:

·     The device has a route to reach the next hop IPv6address.

·     MPLS is enabled on the output interface of the route.

If you specify an output interface, make sure the following requirements are met:

·     The interface is up.

·     The interface can receive direct routes.

·     MPLS is enabled on the interface.

On a device, the incoming label specified by this command must be different than other static LSPs and static CRLSPs. If not, this command fails to be executed.

If you specify a link local address as the next hop address in an IPv6 static adjacency segment, you must also specify an output interface.

Examples

# Configure adjacency segment adj1, and specify the incoming label as 100 and the next hop IPv6 address as 1::2.

<Sysname> system-view

[Sysname] static-sr-mpls ipv6 adjacency adj1 in-label 100 nexthop 1::2

Related commands

display static-sr-mpls ipv6 adjacency

static-sr-mpls lsp

static-sr-mpls lsp

Use static-sr-mpls lsp to configure a static SRLSP.

Use undo static-sr-mpls lsp to delete a static SRLSP.

Syntax

static-sr-mpls lsp lsp-name out-label out-label-value&<1-11>

undo static-sr-mpls lsp lsp-name

Default

No static SRLSPs exist.

Views

System view

Predefined user roles

network-admin

Parameters

lsp-name: Specifies the static SRLSP name, a case-sensitive string of 1 to 67 characters.

out-label out-label-value&<1-11>: Specifies a space-separated list of up to 11 outgoing labels. The outgoing labels represent the incoming MPLS labels of the nodes that a static SRLSP traverses, from the nearest to the farthest away from the ingress node. The value range for the out-label-value argument is 0, 3, and 16 to 1048575.

Usage guidelines

Execute this command only on the ingress node of a static SRLSP. Packets forwarded over the static SRLSP will carry the label values in the specified outgoing label list. The nodes of the static CRLSP will pop outgoing label values or insert new labels in sequence.

Examples

# Configure static SRLSP lsp1, and specify the outgoing labels as 100, 200, and 300.

<Sysname> system-view

[Sysname] static-sr-mpls lsp lsp1 out-label 100 200 300

Related commands

display mpls static-sr-mpls adjacency

display mpls static-sr-mpls ipv6 prefix

display mpls static-sr-mpls lsp

display mpls static-sr-mpls prefix

static-sr-mpls adjacency

static-sr-mpls ipv6 adjacency

static-sr-mpls ipv6 prefix

static-sr-mpls prefix

static-sr-mpls prefix

Use static-sr-mpls prefix to configure an IPv4 prefix segment for static SR.

Use undo static-sr-mpls prefix to delete an IPv4 prefix segment.

Syntax

static-sr-mpls [ vpn-instance vpn-instance-name ] prefix prefix-path-name destination ipv4-address { mask | mask-length } in-label in-label-value [ { nexthop ipv4-address | outgoing-interface interface-type interface-number } out-label out-label-value ]

undo static-sr-mpls [ vpn-instance vpn-instance-name ] prefix prefix-path-name [ destination ipv4-address { mask | mask-length } in-label in-label-value [ nexthop ipv4-address | outgoing-interface interface-type interface-number ] ]

Default

No IPv4 prefix segments exist.

Views

System view

Predefined user roles

network-admin

Parameters

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command configures an IPv4 prefix segment for static SR on the public network.

prefix-path-name: Specifies the prefix segment name, a case-sensitive string of 1 to 67 characters.

destination ipv4-address: Specifies the destination IPv4 address.

mask: Specifies the mask.

mask-length: Specifies the mask length, in the range of 0 to 32.

in-label label-value: Specifies the incoming label, in the range of 16000 to 55999.

nexthop ipv4-address: Specifies the next hop IPv4 address.

outgoing-interface interface-type interface-number: Specifies an output interface by its type and number. The output interface must be a P2P interface.

out-label out-label-value: Specifies the outgoing label, in the range of 0, 3, and 16 to 1048575. If you do not specify this option, the device does not insert an outgoing label after popping the incoming label.

Usage guidelines

Execute this command on a node of a static SRLSP to assign an incoming label and an outgoing label to a destination IPv4 address. After the node receives a packet with that incoming label, it will pop the incoming label, insert the outgoing label, and forward the packet through the specified next hop or output interface.

If you do not specify the next hop and outgoing label or do not specify the output interface and outgoing label, the device does not insert an outgoing label after popping the incoming label. On the egress node of a static SRLSP, you can execute this command without specifying a next hop, an output interface, and an outgoing label.

A prefix segment must use the next hop or output interface of the optimal route (non-BGP route) to the destination address of the prefix segment. You can configure multiple prefix segments to the destination address for load sharing if the optimal route has more than one next hops or output interfaces. To avoid configuration failure, make sure all prefix segments use the same prefix segment name, incoming label, and outgoing label.

Execute this command on all nodes of a static SRLSP.

A static prefix segment must use a different incoming label than existing static LSPs, static PWs, and static CRLSPs. If not, this command fails to be executed.

If you specify only the prefix-path-name argument, the undo static-sr-mpls prefix command deletes all IPv4 prefix segments with the specified name. If you specify a prefix segment name, destination IPv4 address, and an incoming label, the undo static-sr-mpls prefix command deletes all IPv4 prefix segments with the specified name, destination IPv4 address, and incoming label. If you specify all parameters, only the IPv4 prefix segment that matches the specified name, destination IPv4 address, and next hop or output interface is deleted.

Examples

# Configure prefix segment prefix1, specify the destination IPv4 address, incoming label, outgoing label, and next hop as 2.2.2.2, 16000, 16001, and 10.0.0.2, respectively.

<Sysname> system-view

[Sysname] static-sr-mpls prefix prefix1 destination 2.2.2.2 32 in-label 16000 nexthop 10.0.0.2 out-label 16001

Related commands

display mpls static-sr-mpls prefix

static-sr-mpls lsp

static-sr-mpls ipv6 prefix

Use static-sr-mpls ipv6 prefix to configure an IPv6 prefix segment for static SR.

Use undo static-sr-mpls ipv6 prefix to delete an IPv6 prefix segment.

Syntax

static-sr-mpls ipv6 [ vpn-instance vpn-instance-name ] prefix prefix-path-name destination ipv6-address prefix-length in-label in-label-value [ { nexthop ipv6-address | outgoing-interface interface-type interface-number } out-label out-label-value ]

undo static-sr-mpls ipv6 [ vpn-instance vpn-instance-name ] prefix prefix-path-name [ destination ipv6-address prefix-length in-label in-label-value [ nexthop ipv6-address | outgoing-interface interface-type interface-number ] ]

Default

No IPv6 prefix segments exist.

Views

System view

Predefined user roles

network-admin

Parameters

vpn-instance vpn-instance-name: Specifies an MPLS L3VPN instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an MPLS L3VPN instance, this command configures an IPv6 prefix segment for static SR on the public network.

prefix-path-name: Specifies the prefix segment name, a case-sensitive string of 1 to 67 characters.

destination ipv6-address: Specifies the destination IPv6 address.

prefix-length: Specifies the prefix length, in the range of 0 to 128.

in-label label-value: Specifies the incoming label, in the range of 16000 to 55999.

nexthop ipv6-address: Specifies the next hop IPv6 address.

outgoing-interface interface-type interface-number: Specifies an output interface by its type and number. The output interface must be a P2P interface.

out-label out-label-value: Specifies the outgoing label, in the range of 2, 3, and 16 to 1048575.

Usage guidelines

Execute this command on a node of a static SRLSP to assign an incoming label and an outgoing label to a destination IPv6 address. After the node receives a packet with that incoming label, it will pop the incoming label, insert the outgoing label, and forward the packet through the specified next hop or output interface.

If you do not specify the next hop and outgoing label or do not specify the output interface and outgoing label, the device does not insert an outgoing label after popping the incoming label. On the egress node of a static SRLSP, you can execute this command without specifying a next hop, an output interface, and an outgoing label.

A prefix segment must use the next hop or output interface of the optimal route (non-BGP route) to the destination address of the prefix segment. You can configure multiple prefix segments to the destination address for load sharing if the optimal route has more than one next hops or output interfaces. To avoid configuration failure, make sure all prefix segments use the same prefix segment name, incoming label, and outgoing label.

Execute this command on all nodes of a static SRLSP.

A static prefix segment must use a different incoming label than existing static LSPs, static PWs, and static CRLSPs. If not, this command fails to be executed.

If you specify only the prefix-path-name argument, the undo static-sr-mpls ipv6 prefix command deletes all IPv6 prefix segments with the specified name. If you specify a prefix segment name, destination IPv6 address, and an incoming label, the undo static-sr-mpls ipv6 prefix command deletes all IPv6 prefix segments with the specified name, destination IPv6 address, and incoming label. If you specify all parameters, only the IPv6 prefix segment that matches the specified name, destination IPv6 address, and next hop or output interface is deleted.

Examples

# Configure prefix segment prefix1, specify the destination IPv6 address, incoming label, outgoing label, and next hop as 2::2, 16000, 16001, and 1::2, respectively.

<Sysname> system-view

[Sysname] static-sr-mpls ipv6 prefix prefix1 destination 2::2 128 in-label 16000 nexthop 1::2 out-label 16001

Related commands

display mpls static-sr-mpls ipv6 prefix

static-sr-mpls lsp

tunnel-bfd detect-multiplier

Use tunnel-bfd detect-multiplier to set the tunnel BFD detection time multiplier for SRLSPs.

Use undo tunnel-bfd detect-multiplier to restore the default.

Syntax

tunnel-bfd detect-multiplier value

undo tunnel-bfd detect-multiplier

Default

The tunnel BFD detection time multiplier is not set for SRLSPs and the setting for the bfd multi-hop detect-multiplier command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

value: Specifies a detection time multiplier, which is the maximum number of consecutive BFD packets that can be discarded. The value range for this argument is 3 to 50.

Usage guidelines

The device sends BFD packets periodically to a peer. If the device does not receive BFD packets from the peer within the detection time, it determines that the BFD session with the peer has gone down.

The actual detection time is the detection time multiplier of the receiver multiplied by the actual BFD packet transmitting interval of the receiver.

This command takes effect only on the BFD sessions created by the tunnel-bfd enable command.

Examples

# Set the BFD detection time multiplier to 3.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] tunnel-bfd detect-multiplier 3

Related commands

bfd multi-hop detect-multiplier (High Availability Command Reference)

tunnel-bfd enable

tunnel-bfd enable

Use tunnel-bfd enable to enable tunnel BFD for all SRLSPs.

Use undo tunnel-bfd enable to restore the default.

Syntax

tunnel-bfd enable [ prefix-list prefix-list-name ] [ echo | nil-fec ]

undo tunnel-bfd enable

Default

Tunnel BFD is not enabled to verify the connectivity of SRLSPs.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

prefix-list prefix-list-name: Specifies an IPv4 prefix list by the prefix list name, a case-sensitive string of 1 to 63 characters. The device can create tunnel BFD sessions only for the SRLSPs permitted by the specified IPv4 prefix list. If you do not specify an IPv4 prefix list, the device can create tunnel BFD sessions for all SRLSPs.

echo: Specifies the BFD echo packet mode. If you do not specify this keyword, the BFD control packet mode is used to verify SRLSP connectivity.

nil-fec: Encapsulates the Nil FEC in MPLS echo request packets when BFD control packet mode is used to detect SRLSPs. In LDP to SR interworking mode, the ingress node (source node) cannot determine whether the LDP LSP is connected to the SRLSP. When the ingress node uses MPLS BFD to detect LSPs, it encapsulates LDP FEC in MPLS echo request packets, which will fail the FEC type verification on the egress node (end-point node). Then, the BFD session will go down. To resolve this issue, specify the nil-fec keyword to enable the ingress node to encapsulate the Nil FEC in MPLS echo request packets. The egress node will not check the FEC type of packets encapsulated with the Nil FEC.

Usage guidelines

This command establishes tunnel BFD sessions to verify the connectivity of all SRLSPs.

A tunnel BFD session is a BFD session established for the primary and backup SRLSPs of a specific FEC (destination IP/mask). The BFD session is up as long as an SRLSP is available for the FEC. If both the primary and backup SRLSPs for the FEC are faulty, the BFD session goes down. BFD then quickly triggers a protection measure (such as MPLS L3VPN FRR) to switch traffic to other forwarding paths to reduce traffic loss.

If you configure both the mpls tunnel-bfd command for an SRLSP and the tunnel-bfd enable command for all SRLSPs, the mpls tunnel-bfd command takes effect for that SRLSP.

Examples

# Enable tunnel BFD to verify the connectivity of all SRLSPs.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] tunnel-bfd enable

Related commands

mpls tunnel-bfd (for LSP) (MPLS Command Reference)

tunnel-bfd min-echo-receive-interval

Use tunnel-bfd min-echo-receive-interval to set the minimum interval for receiving BFD echo packets for SRLSP tunnel BFD.

Use undo tunnel-bfd min-echo-receive-interval to restore the default.

Syntax

tunnel-bfd min-echo-receive-interval interval

undo tunnel-bfd min-echo-receive-interval

Default

The minimum interval for receiving BFD echo packets is not set for SRLSP tunnel BFD. The interval set by the bfd multi-hop min-echo-receive-interval command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

interval: Specifies the minimum interval for receiving BFD echo packets, in milliseconds. The value range is 3 to 10000.

Usage guidelines

The interval for receiving BFD echo packets is also the interval for sending BFD echo packets. By executing this command, you can control both the receiving interval and sending interval for BFD echo packets.

This command takes effect only on the echo mode BFD sessions created by the tunnel-bfd enable command.

Examples

# Set the minimum BFD echo packet receiving interval for SRLSP tunnel BFD to 450 milliseconds.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] tunnel-bfd min-echo-receive-interval 450

Related commands

bfd multi-hop min-echo-receive-interval (High Availability Command Reference)

tunnel-bfd enable

tunnel-bfd min-receive-interval

Use tunnel-bfd min-receive-interval to set the minimum BFD packet receiving interval for SRLSP tunnel BFD.

Use undo tunnel-bfd min-receive-interval to restore the default.

Syntax

tunnel-bfd min-receive-interval interval

undo tunnel-bfd min-receive-interval

Default

The minimum interval for receiving BFD packets is not set for SRLSP tunnel BFD. The setting for the bfd multi-hop min-receive-interval command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

interval: Specifies the minimum interval for receiving BFD packets, in milliseconds. The value range is 3 to 10000.

Usage guidelines

Use this command to prevent the packet sending rate of the peer end from exceeding the packet receiving rate of the local end.

The actual BFD packet transmitting interval on the peer end is the greater value between the following values:

·     Minimum interval for transmitting BFD packets on the peer end.

·     Minimum interval for receiving BFD packets on the local end.

This command takes effect only on the BFD sessions created by the tunnel-bfd enable command.

Examples

# Set the minimum BFD packet receiving interval to 30 milliseconds for SRLSP tunnel BFD.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] tunnel-bfd min-receive-interval 30

Related commands

bfd multi-hop min-receive-interval (High Availability Command Reference)

tunnel-bfd enable

tunnel-bfd min-transmit-interval

Use tunnel-bfd min-transmit-interval to set the minimum BFD packet transmitting interval for SRLSP tunnel BFD.

Use undo tunnel-bfd min-transmit-interval to restore the default.

Syntax

tunnel-bfd min-transmit-interval interval

undo tunnel-bfd min-transmit-interval

Default

The minimum interval for transmitting BFD packets is not set for tunnel BFD. The setting for the bfd multi-hop min-transmit-interval command applies.

Views

Segment routing view

Predefined user roles

network-admin

Parameters

interval: Specifies the minimum interval for transmitting BFD packets, in milliseconds. The value range is 3 to 10000.

Usage guidelines

Use this command to prevent the BFD packet sending rate from exceeding the packet receiving rate of the peer end.

The actual BFD packet transmitting interval on the local end is the greater value between the following values:

·     Minimum interval for transmitting BFD packets on the local end.

·     Minimum interval for receiving BFD packets on the peer end.

This command takes effect only on the BFD sessions created by the tunnel-bfd enable command.

Examples

# Set the minimum BFD packet transmitting interval to 30 milliseconds for SRLSP tunnel BFD.

<Sysname> system-view

[Sysname] segment-routing

[Sysname-segment-routing] tunnel-bfd min-transmit-interval 30

Related commands

bfd multi-hop min-transmit-interval (High Availability Command Reference)

tunnel-bfd enable

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Intelligent Storage
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
  • Technical Blogs
All Support
  • Become A Partner
  • Partner Policy & Program
  • Global Learning
  • Partner Sales Resources
  • Partner Business Management
  • Service Business
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网