02-QoS配置
本章节下载: 02-QoS配置 (829.60 KB)
目 录
QoS即服务质量。对于网络业务,影响服务质量的因素包括传输的带宽、传送的时延、数据的丢包率等。在网络中可以通过保证传输的带宽、降低传送的时延、降低数据的丢包率以及时延抖动等措施来提高服务质量。
网络资源总是有限的,只要存在抢夺网络资源的情况,就会出现服务质量的要求。服务质量是相对网络业务而言的,在保证某类业务的服务质量的同时,可能就是在损害其它业务的服务质量。例如,在网络总带宽固定的情况下,如果某类业务占用的带宽越多,那么其他业务能使用的带宽就越少,可能会影响其他业务的使用。因此,网络管理者需要根据各种业务的特点来对网络资源进行合理的规划和分配,从而使网络资源得到高效利用。
下面从QoS服务模型出发,对目前使用最多、最成熟的一些QoS技术逐一进行描述。在特定的环境下合理地使用这些技术,可以有效地提高服务质量。
通常QoS提供以下三种服务模型:
· Best-Effort service(尽力而为服务模型)
· Integrated service(综合服务模型,简称IntServ)
· Differentiated service(区分服务模型,简称DiffServ)
Best-Effort是一个单一的服务模型,也是最简单的服务模型。对Best-Effort服务模型,网络尽最大的可能性来发送报文。但对时延、可靠性等性能不提供任何保证。
Best-Effort服务模型是网络的缺省服务模型,通过FIFO队列来实现。它适用于绝大多数网络应用,如FTP、E-Mail等。
IntServ是一个综合服务模型,它可以满足多种QoS需求。该模型使用RSVP协议,RSVP运行在从源端到目的端的每个设备上,可以监视每个流,以防止其消耗资源过多。这种体系能够明确区分并保证每一个业务流的服务质量,为网络提供最细粒度化的服务质量区分。
但是,IntServ模型对设备的要求很高,当网络中的数据流数量很大时,设备的存储和处理能力会遇到很大的压力。IntServ模型可扩展性很差,难以在Internet核心网络实施。
DiffServ是一个多服务模型,它可以满足不同的QoS需求。与IntServ不同,它不需要通知网络为每个业务预留资源。区分服务实现简单,扩展性较好。
本文提到的技术都是基于DiffServ服务模型。
QoS技术包括流分类、流量监管、流量整形、限速、拥塞管理、拥塞避免等。下面对常用的技术进行简单地介绍。
图1-1 常用QoS技术在网络中的位置
如图1-1所示,流分类、流量监管、流量整形、拥塞管理和拥塞避免主要完成如下功能:
· 流分类:采用一定的规则识别符合某类特征的报文,它是对网络业务进行区分服务的前提和基础。
· 流量监管:对进入或流出设备的特定流量进行监管,以保护网络资源不受损害。可以作用在接口入方向和出方向。
· 流量整形:一种主动调整流的输出速率的流量控制措施,用来使流量适配下游设备可供给的网络资源,避免不必要的报文丢弃,通常作用在接口出方向。
· 拥塞管理:当拥塞发生时制定一个资源的调度策略,决定报文转发的处理次序,通常作用在接口出方向。
· 拥塞避免:监督网络资源的使用情况,当发现拥塞有加剧的趋势时采取主动丢弃报文的策略,通过调整队列长度来解除网络的过载,通常作用在接口出方向。
图1-2 各QoS技术在同一网络设备中的处理顺序
图1-2简要描述了各种QoS技术在网络设备中的处理顺序。
(1) 首先通过流分类对各种业务进行识别和区分,它是后续各种动作的基础;
(2) 通过各种动作对特定的业务进行处理。这些动作需要和流分类关联起来才有意义。具体采取何种动作,与所处的阶段以及网络当前的负载状况有关。例如,当报文进入网络时进行流量监管;流出节点之前进行流量整形;拥塞时对队列进行拥塞管理;拥塞加剧时采取拥塞避免措施等。
QoS的配置方式分为QoS策略配置方式和非QoS策略配置方式两种。
非QoS策略配置方式是指不通过QoS策略来进行配置。例如,限速功能可以通过直接在接口上配置来实现。
QoS策略配置方式是指通过配置QoS策略来实现QoS功能。
QoS策略包含了三个要素:类、流行为、策略。用户可以通过QoS策略将指定的类和流行为绑定起来,灵活地进行QoS配置。
类的要素包括:类的名称和类的规则。
用户可以通过命令定义一系列的规则来对报文进行分类。
流行为用来定义针对报文所做的QoS动作。
流行为的要素包括:流行为的名称和流行为中定义的动作。
用户可以通过命令在一个流行为中定义多个动作。
策略用来将指定的类和流行为绑定起来,对符合分类条件的报文执行流行为中定义的动作。
策略的要素包括:策略名称、绑定在一起的类和流行为的名称。
用户可以在一个策略中定义多个类与流行为的绑定关系。
如图2-1所示:
图2-1 QoS策略配置方式的步骤
定义类首先要创建一个类,然后在该类的视图下配置匹配规则。
表2-1 定义类
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
创建类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,不存在类 |
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,未定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
定义流行为首先需要创建一个流行为,然后可以在该流行为视图下根据需要配置相应的QoS动作。每个流行为由一组QoS动作组成。
表2-2 定义流行为
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
创建流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,不存在流行为 |
配置流行为的动作 |
流行为就是对应符合流分类的报文做出相应的QoS动作,例如流量监管、流量过滤、重标记、流量统计等,具体情况请参见本文相关章节 |
缺省情况下,未配置流行为的动作 |
在策略视图下为类指定对应的流行为。以某种匹配规则将流区分为不同的类,再结合不同的流行为就能很灵活的实现各种QoS功能。
表2-3 定义策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
创建QoS策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,不存在QoS策略 |
为类指定流行为 |
classifier classifier-name behavior behavior-name [ insert-before before-classifier-name ] |
缺省情况下,没有为类指定流行为 |
QoS策略支持以下应用方式:
· 基于接口应用QoS策略:QoS策略对通过接口接收或发送的流量生效。
· 基于VLAN应用QoS策略:QoS策略对通过同一个VLAN内所有接口接收或发送的流量生效。
· 基于全局应用QoS策略:QoS策略对所有流量生效。
· 基于上线用户应用QoS策略:QoS策略对通过上线用户接收或发送的流量生效。
QoS策略应用后,用户仍然可以修改QoS策略中的流分类规则和流行为,以及二者的对应关系。当流分类规则中匹配的是ACL时,允许删除或修改该ACL(包括向该ACL中添加、删除和修改规则)。
QoS策略可以应用到二层以太网接口、二层聚合接口、三层以太网接口和三层聚合接口。三层以太网接口是指在以太网接口视图下通过port link-mode route命令切换为三层模式的以太网接口,有关以太网接口工作模式切换的操作,请参见“二层技术-以太网交换配置指导”中的“以太网接口配置”。
一个策略可以应用于多个接口。接口的每个方向(出和入两个方向)只能应用一个策略。
如果QoS策略应用在接口的出方向,则QoS策略对本地协议报文不起作用。本地协议报文是设备内部发起的某些报文,它是维持设备正常运行的重要协议报文。为了确保这些报文能够被不受影响的发送出去,即便在接口的出方向应用了QoS策略,本地协议报文也不会受到QoS策略的限制,从而降低了因配置QoS而误将这些报文丢弃或进行其他处理的风险。一些常见的本地协议报文如下:链路维护报文、RIP、LDP、SSH等。
表2-4 在接口上应用策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
在接口上应用QoS策略 |
qos apply policy policy-name { inbound | outbound } |
缺省情况下,未在接口上应用QoS策略 |
· 基于VLAN应用的QoS策略不能应用在动态VLAN上,例如GVRP协议创建的VLAN。
· 当某个成员设备资源不足导致VLAN应用QoS策略失败时,用户可以执行undo qos vlan-policy vlan命令进行手工删除。
基于VLAN应用QoS策略可以方便对某个VLAN上的所有流量进行管理。
表2-5 基于VLAN应用的QoS策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
在指定VLAN上应用QoS策略 |
qos vlan-policy policy-name vlan vlan-id-list { inbound | outbound } |
缺省情况下,未在指定VLAN上应用QoS策略 |
当某个成员设备资源不足导致全局应用QoS策略失败时,用户可以执行undo qos apply policy global命令进行手工删除。
基于全局应用QoS策略可以方便对设备上的所有流量进行管理。
表2-6 基于全局应用QoS策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
全局应用QoS策略 |
qos apply policy policy-name global { inbound | outbound } |
缺省情况下,未在全局应用QoS策略 |
一个策略可以应用于多个上线用户。上线用户的每个方向(发送和接收两个方向)只能应用一个策略,如果用户想修改某方向上应用的策略,必须先取消原先的配置,然后再配置新的策略。
表2-7 基于上线用户应用QoS策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入User Profile视图 |
user-profile profile-name |
进入User Profile视图后,下面的配置只有在下发驱动成功后才生效 |
在User Profile下应用QoS策略 |
qos apply policy policy-name { inbound | outbound } |
缺省情况下,未在User Profile下应用QoS策略 inbound是对设备接收的上线用户流量(即上线用户发送的流量)应用策略;outbound是对设备发送的上线用户流量(即上线用户接收的流量)应用策略 |
在任意视图下执行display命令可以显示QoS策略的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除QoS策略的统计信息。
表2-8 QoS策略显示和维护
操作 |
命令 |
显示类的配置信息 |
display traffic classifier user-defined [ classifier-name ] [ slot slot-number ] |
显示流行为的配置信息 |
display traffic behavior user-defined [ behavior-name ] [ slot slot-number ] |
显示QoS和ACL资源的使用情况(本命令的详细介绍,请参见“ACL和QoS命令参考”中的“ACL”) |
display qos-acl resource [ slot slot-number ] |
显示QoS策略的配置信息 |
display qos policy user-defined [ policy-name [ classifier classifier-name ] ] [ slot slot-number ] |
显示接口上QoS策略的配置信息和运行情况 |
display qos policy interface [ interface-type interface-number [ inbound | outbound ] |
显示用户上线后User Profile下应用的QoS策略的信息和运行情况 |
display qos policy user-profile [ name profile-name ] [ user-id user-id ] [ slot slot-number ] [ inbound | outbound ] |
显示基于VLAN应用QoS策略的信息 |
display qos vlan-policy { name policy-name | vlan vlan-id } [ slot slot-number ] [ inbound | outbound ] |
显示基于全局应用QoS策略的信息 |
display qos policy global [ slot slot-number ] [ inbound | outbound ] |
清除VLAN应用QoS策略的统计信息 |
reset qos vlan-policy [ vlan vlan-id ] [ inbound | outbound ] |
清除全局应用QoS策略的统计信息 |
reset qos policy global [ inbound | outbound ] |
报文在进入设备以后,设备会根据映射规则分配或修改报文的各种优先级的值,为队列调度和拥塞控制服务。
优先级映射功能通过报文所携带的优先级字段来映射其他优先级字段值,就可以获得决定报文调度能力的各种优先级字段,从而为全面有效的控制报文的转发调度等级提供依据。
优先级用于标识报文传输的优先程度,可以分为两类:报文携带优先级和设备调度优先级。
报文携带优先级包括:802.1p优先级、DSCP优先级、IP优先级、EXP优先级等。这些优先级都是根据公认的标准和协议生成,体现了报文自身的优先等级。相关介绍请参见12.3 附录 C 各种优先级介绍。
设备调度优先级是指报文在设备内转发时所使用的优先级,只对当前设备自身有效。设备调度优先级包括以下几种:
· 本地优先级(LP):设备为报文分配的一种具有本地意义的优先级,每个本地优先级对应一个队列,本地优先级值越大的报文,进入的队列优先级越高,从而能够获得优先的调度。
· 丢弃优先级(DP):在进行报文丢弃时参考的参数,丢弃优先级值越大的报文越被优先丢弃。
设备提供了多张优先级映射表,分别对应不同的优先级映射关系。
通常情况下,设备可以通过查找缺省优先级映射表(12.2 附录 B 缺省优先级映射表)来为报文分配相应的优先级。如果缺省优先级映射表无法满足用户需求,可以根据实际情况对映射表进行修改。
常用的方式有三种:配置优先级信任模式、配置接口优先级和通过QoS策略配置。
如果配置了优先级信任模式,即表示设备信任所接收报文的优先级,会自动解析报文的优先级或者标志位,然后按照映射表映射到报文的优先级参数。
如果没有配置优先级信任模式,并且配置了接口优先级值,则表明设备不信任所接收报文的优先级,而是使用接口优先级,按照映射表映射到报文的优先级参数。
表3-1 优先级映射配置任务简介
配置任务 |
说明 |
详细配置 |
配置优先级映射表 |
可选 |
|
配置优先级信任模式 |
必选其一 |
|
配置接口优先级 |
本节中的“接口”指的是二层以太网接口和三层以太网接口。三层以太网接口是指在以太网接口视图下通过port link-mode route命令切换为三层模式的以太网接口,有关以太网接口工作模式切换的操作,请参见“二层技术-以太网交换配置指导”中的“以太网接口配置”。
表3-2 优先级映射表
优先级映射 |
描述 |
dot1p-dp |
802.1p优先级到丢弃优先级映射表 |
dot1p-lp |
802.1p优先级到本地优先级映射表 |
dscp-dot1p |
DSCP到802.1p优先级映射表 |
dscp-dp |
DSCP到丢弃优先级映射表 |
dscp-dscp |
DSCP到DSCP优先级映射表 |
表3-3 配置优先级映射表
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入指定的优先级映射表视图 |
qos map-table { dot1p-dp | dot1p-lp | dscp-dot1p | dscp-dp | dscp-dscp } |
用户根据需要进入相应的优先级映射表视图 |
配置指定优先级映射表的映射关系 |
import import-value-list export export-value |
缺省情况下,优先级映射表的映射关系请参见12.2 附录 B 缺省优先级映射表 多次执行本命令,最后一次执行的命令生效 |
根据报文自身的优先级,查找优先级映射表,为报文分配优先级参数,可以通过配置优先级信任模式的方式来实现。
在配置接口上的优先级模式时,用户可以选择下列信任模式:
· dot1p:信任报文自带的802.1p优先级,以此优先级进行优先级映射。
· dscp:信任IP报文自带的DSCP优先级,以此优先级进行优先级映射。
表3-4 配置优先级信任模式
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
配置优先级信任模式 |
qos trust { dot1p | dscp } |
缺省情况下,设备不信任报文携带的优先级,会使用接口优先级作为报文的802.1p优先级进行优先级映射 |
按照接收接口的接口优先级,设备通过一一映射为报文分配相应的优先级。
表3-5 配置接口优先级
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
配置接口优先级 |
qos priority priority-value |
缺省情况下,接口的优先级为0 |
在完成上述配置后,在任意视图下执行display命令可以显示配置后优先级映射的运行情况,通过查看显示信息验证配置的效果。
表3-6 优先级映射显示和维护
操作 |
命令 |
显示指定优先级映射表配置情况 |
display qos map-table [ dot1p-dp | dot1p-lp | dscp-dot1p | dscp-dp | dscp-dscp ] |
显示接口优先级信任模式信息 |
display qos trust interface [ interface-type interface-number ] |
Device A和Device B通过Device C实现互连。网络环境描述如下:
· Device A通过接口GigabitEthernet1/0/1接入Device C,向Device C发送IP优先级值为3的报文;
· Device B通过接口GigabitEthernet1/0/2接入Device C,向Device C发送IP优先级值为1的报文。
要求通过配置实现如下需求:如果Device C在接口GigabitEthernet1/0/3的出方向发生拥塞,则优先让Device A访问Server。
图3-1 接口优先级配置组网图
# 在接口GigabitEthernet1/0/1和GigabitEthernet1/0/2上分别配置接口优先级,GigabitEthernet1/0/1上配置的接口优先级值要高于GigabitEthernet1/0/2上配置的接口优先级值。
<DeviceC> system-view
[DeviceC] interface gigabitethernet 1/0/1
[DeviceC-GigabitEthernet1/0/1] qos priority 3
[DeviceC-GigabitEthernet1/0/1] quit
[DeviceC] interface gigabitethernet 1/0/2
[DeviceC-GigabitEthernet1/0/2] qos priority 1
[DeviceC-GigabitEthernet1/0/2] quit
公司企业网通过Device实现各部门之间的互连。网络环境描述如下:
· 市场部门通过接口GigabitEthernet1/0/1接入Device,标记市场部门发出的报文的802.1p优先级为3;
· 研发部门通过接口GigabitEthernet1/0/2接入Device,标记研发部门发出的报文的802.1p优先级为4;
· 管理部门通过接口GigabitEthernet1/0/3接入Device,标记管理部门发出的报文的802.1p优先级为5。
实现如下需求:
访问公共服务器的时候,研发部门 > 管理部门 > 市场部门。
· 通过优先级映射将研发部门发出的报文放入出队列6中,优先进行处理;
· 通过优先级映射将管理部门发出的报文放入出队列4中,次优先进行处理;
· 通过优先级映射将市场部门发出的报文放入出队列2中,最后进行处理。
访问Internet的时候,管理部门 > 市场部门 > 研发部门。
· 重标记管理部门发出的报文本地优先级为6,优先进行处理;
· 重标记市场部门发出的报文的本地优先级为4,次优先进行处理;
· 重标记研发部门发出的报文的本地优先级为2,最后进行处理。
图3-2 优先级映射表和重标记配置组网图
(1) 配置接口的接口优先级
# 配置接口GigabitEthernet1/0/1的接口优先级为3。
<Device> system-view
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos priority 3
[Device-GigabitEthernet1/0/1] quit
# 配置接口GigabitEthernet1/0/2的接口优先级为4。
[Device] interface gigabitethernet 1/0/2
[Device-GigabitEthernet1/0/2] qos priority 4
[Device-GigabitEthernet1/0/2] quit
# 配置接口GigabitEthernet1/0/3的接口优先级为5。
[Device] interface gigabitethernet 1/0/3
[Device-GigabitEthernet1/0/3] qos priority 5
[Device-GigabitEthernet1/0/3] quit
(2) 配置优先级映射表
# 配置802.1p优先级到本地优先级映射表,将802.1p优先级3、4、5对应的本地优先级配置为2、6、4。保证访问服务器的优先级为研发部门(6)>管理部门(4)>市场部门(2)。
[Device] qos map-table dot1p-lp
[Device-maptbl-dot1p-lp] import 3 export 2
[Device-maptbl-dot1p-lp] import 4 export 6
[Device-maptbl-dot1p-lp] import 5 export 4
[Device-maptbl-dot1p-lp] quit
(3) 配置重标记
# 将管理、市场、研发部门发出的HTTP报文的802.1p优先级分别重标记为4、5、3,使其能根据前面配置的映射表分别映射到本地优先级6、4、2。
# 创建ACL 3000,用来匹配HTTP报文。
[Device] acl advance 3000
[Device-acl-adv-3000] rule permit tcp destination-port eq 80
[Device-acl-adv-3000] quit
# 创建流分类,匹配ACL 3000。
[Device] traffic classifier http
[Device-classifier-http] if-match acl 3000
[Device-classifier-http] quit
# 配置管理部门的重标记策略并应用到接口GigabitEthernet1/0/3的入方向。
[Device] traffic behavior admin
[Device-behavior-admin] remark dot1p 4
[Device-behavior-admin] quit
[Device] qos policy admin
[Device-qospolicy-admin] classifier http behavior admin
[Device-qospolicy-admin] quit
[Device] interface gigabitethernet 1/0/3
[Device-GigabitEthernet1/0/3] qos apply policy admin inbound
# 配置市场部门的重标记策略并应用到接口GigabitEthernet1/0/1的入方向。
[Device] traffic behavior market
[Device-behavior-market] remark dot1p 5
[Device-behavior-market] quit
[Device] qos policy market
[Device-qospolicy-market] classifier http behavior market
[Device-qospolicy-market] quit
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos apply policy market inbound
# 配置研发部门的重标记策略并应用到接口GigabitEthernet1/0/2的入方向。
[Device] traffic behavior rd
[Device-behavior-rd] remark dot1p 3
[Device-behavior-rd] quit
[Device] qos policy rd
[Device-qospolicy-rd] classifier http behavior rd
[Device-qospolicy-rd] quit
[Device] interface gigabitethernet 1/0/2
[Device-GigabitEthernet1/0/2] qos apply policy rd inbound
如果不限制用户发送的流量,那么大量用户不断突发的数据只会使网络更拥挤。为了使有限的网络资源能够更好地发挥效用,更好地为更多的用户服务,必须对用户的流量加以限制。比如限制每个时间间隔某个流只能得到承诺分配给它的那部分资源,防止由于过分突发所引发的网络拥塞。
流量监管、流量整形和限速可以实现流量的速率限制功能,而要实现此功能就必须对通过设备的流量进行度量。一般采用令牌桶(Token Bucket)对流量进行度量。
令牌桶可以看作是一个存放一定数量令牌的容器。系统按设定的速度向桶中放置令牌,当桶中令牌满时,多出的令牌溢出,桶中令牌不再增加。
在用令牌桶评估流量规格时,是以令牌桶中的令牌数量是否足够满足报文的转发为依据的。如果桶中存在足够的令牌可以用来转发报文,称流量遵守或符合这个规格,否则称为不符合或超标。
评估流量时令牌桶的参数包括:
· 平均速率:向桶中放置令牌的速率,即允许的流的平均速度。通常配置为CIR。
· 突发尺寸:令牌桶的容量,即每次突发所允许的最大的流量尺寸。通常配置为CBS,突发尺寸必须大于最大报文长度。
每到达一个报文就进行一次评估。每次评估,如果桶中有足够的令牌可供使用,则说明流量控制在允许的范围内,此时要从桶中取走满足报文的转发的令牌;否则说明已经耗费太多令牌,流量超标了。
为了评估更复杂的情况,实施更灵活的调控策略,可以配置两个令牌桶(分别称为C桶和E桶)。以流量监管为例,分为单速率单桶双色算法、单速率双桶三色算法和双速率双桶三色算法。
(1) 单速率单桶双色算法
· CIR:表示向C桶中投放令牌的速率,即C桶允许传输或转发报文的平均速率;
· CBS:表示C桶的容量,即C桶瞬间能够通过的承诺突发流量。
每次评估时,依据下面的情况,可以分别实施不同的流控策略:
· 如果C桶有足够的令牌,报文被标记为green,即绿色报文;
· 如果C桶令牌不足,报文被标记为red,即红色报文。
(2) 单速率双桶三色算法
· CIR:表示向C桶中投放令牌的速率,即C桶允许传输或转发报文的平均速率;
· CBS:表示C桶的容量,即C桶瞬间能够通过的承诺突发流量;
· EBS:表示E桶的容量的增量,即E桶瞬间能够通过的超出突发流量,取值不为0。E桶的容量等于CBS与EBS的和。
每次评估时,依据下面的情况,可以分别实施不同的流控策略:
· 如果C桶有足够的令牌,报文被标记为green,即绿色报文;
· 如果C桶令牌不足,但E桶有足够的令牌,报文被标记为yellow,即黄色报文;
· 如果C桶和E桶都没有足够的令牌,报文被标记为red,即红色报文。
(3) 双速率双桶三色算法
· CIR:表示向C桶中投放令牌的速率,即C桶允许传输或转发报文的平均速率;
· CBS:表示C桶的容量,即C桶瞬间能够通过的承诺突发流量;
· PIR:表示向E桶中投放令牌的速率,即E桶允许传输或转发报文的最大速率;
· EBS:表示E桶的容量,即E桶瞬间能够通过的超出突发流量。
每次评估时,依据下面的情况,可以分别实施不同的流控策略:
· 如果C桶有足够的令牌,报文被标记为green,即绿色报文;
· 如果C桶令牌不足,但E桶有足够的令牌,报文被标记为yellow,即黄色报文;
· 如果C桶和E桶都没有足够的令牌,报文被标记为red,即红色报文。
流量监管支持入和出两个方向,为了方便描述,下文以出方向为例。
流量监管就是对流量进行控制,通过监督进入网络的流量速率,对超出部分的流量进行“惩罚”,使进入的流量被限制在一个合理的范围之内,以保护网络资源和运营商的利益。例如可以限制HTTP报文不能占用超过50%的网络带宽。如果发现某个连接的流量超标,流量监管可以选择丢弃报文,或重新配置报文的优先级。
图4-1 TP示意图
流量监管广泛的用于监管进入Internet服务提供商ISP的网络流量。流量监管还包括对所监管流量的流分类服务,并依据不同的评估结果,实施预先设定好的监管动作。这些动作可以是:
· 转发:比如对评估结果为“符合”的报文继续转发。
· 丢弃:比如对评估结果为“不符合”的报文进行丢弃。
· 改变优先级并转发:比如对评估结果为“符合”的报文,将其优先级进行重标记后再进行转发。
流量整形目前只支持出方向。
流量整形是一种主动调整流量输出速率的措施。一个典型应用是基于下游网络节点的流量监管指标来控制本地流量的输出。
流量整形与流量监管的主要区别在于:
· 流量整形对流量监管中需要丢弃的报文进行缓存——通常是将它们放入缓冲区或队列内,如图4-2所示。当令牌桶有足够的令牌时,再均匀的向外发送这些被缓存的报文。
· 流量整形可能会增加延迟,而流量监管几乎不引入额外的延迟。
例如,在图4-3所示的应用中,设备Device A向Device B发送报文。Device B要对Device A发送来的报文进行流量监管,对超出规格的流量直接丢弃。
为了减少报文的无谓丢失,可以在Device A的出口对报文进行流量整形处理。将超出流量整形特性的报文缓存在Device A中。当可以继续发送下一批报文时,流量整形再从缓冲队列中取出报文进行发送。这样,发向Device B的报文将都符合Device B的流量规定。
限速支持入/出两个方向,为了方便描述,下文以出方向为例。
利用限速可以在一个接口上限制发送报文(除紧急报文)的总速率。
限速也是采用令牌桶进行流量控制。假如在设备的某个接口上配置了限速,所有经由该接口发送的报文首先要经过限速的令牌桶进行处理。如果令牌桶中有足够的令牌,则报文可以发送;否则,报文将进入QoS队列进行拥塞管理。这样,就可以对该接口的报文流量进行控制。
由于采用了令牌桶控制流量,当令牌桶中存有令牌时,可以允许报文的突发性传输;当令牌桶中没有令牌时,报文必须等到桶中生成了新的令牌后才可以继续发送。这就限制了报文的流量不能大于令牌生成的速度,达到了限制流量,同时允许突发流量通过的目的。
与流量监管相比,限速能够限制所有报文。当用户只要求对所有报文限速时,使用限速比较简单。
表4-1 配置流量监管
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
创建一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,不存在类 |
|
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,未定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
|
退回系统视图 |
quit |
- |
|
创建一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,不存在流行为 |
|
配置流量监管动作 |
car cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ green action | red action | yellow action ] * car cir committed-information-rate [ cbs committed-burst-size ] pir peak-information-rate [ ebs excess-burst-size ] [ green action | red action | yellow action ] * |
缺省情况下,未配置流量监管动作 |
|
退回系统视图 |
quit |
- |
|
创建一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,不存在策略 |
|
在策略中为类指定采用的流行为 |
insert-before before-classifier-name ] classifier classifier-name behavior behavior-name [ insert-before before-classifier-name ] |
缺省情况下,没有为类指定流行为 |
|
退回系统视图 |
quit |
- |
|
应用QoS策略 |
基于接口 |
必选其一 缺省情况下,未应用QoS策略 |
|
基于VLAN |
|||
基于全局 |
|||
基于上线用户 |
基于队列的流量整形可以应用到二层以太网接口、三层以太网接口。三层以太网接口是指在以太网接口视图下通过port link-mode route命令切换为三层模式的以太网接口,有关以太网接口工作模式切换的操作,请参见“二层技术-以太网交换配置指导”中的“以太网接口配置”。
表4-2 配置流量整形
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
在接口配置流量整形 |
qos gts queue queue-id cir committed-information-rate [ cbs committed-burst-size ] |
缺省情况下,接口上未配置流量整形 |
本节中的“接口”指的是二层以太网接口和三层以太网接口。三层以太网接口是指在以太网接口视图下通过port link-mode route命令切换为三层模式的以太网接口,有关以太网接口工作模式切换的操作,请参见“二层技术-以太网交换配置指导”中的“以太网接口配置”。
配置接口限速就是限制接口向外发送数据或者接收数据的速率。
表4-3 配置接口限速
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
配置接口限速 |
qos lr { inbound | outbound } cir committed-information-rate [ cbs committed-burst-size ] |
缺省情况下,接口上未配置接口限速 |
在完成上述配置后,在任意视图下执行display命令可以显示配置后流量监管、流量整形和接口限速的运行情况,通过查看显示信息验证配置的效果。
表4-4 流量监管、流量整形和限速显示和维护
操作 |
命令 |
显示QoS和ACL资源的使用情况(本命令的详细介绍,请参见“ACL和QoS命令参考”中的“ACL”) |
display qos-acl resource [ slot slot-number ] |
显示流量监管的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] [ slot slot-number ] |
显示接口的流量整形配置情况和统计信息 |
display qos gts interface [ interface-type interface-number ] |
显示限速配置情况和统计信息 |
display qos lr interface [ interface-type interface-number ] |
· 设备Device A通过接口GigabitEthernet1/0/3和设备Device B的接口GigabitEthernet1/0/1互连
· Server、Host A、Host B可经由Device A和Device B访问Internet
· Server、Host A与Device A的GigabitEthernet1/0/1接口在同一网段
· Host B与Device A的GigabitEthernet1/0/2接口在同一网段
要求在设备Device A上对接口GigabitEthernet1/0/1接收到的源自Server和Host A的报文流分别实施流量控制如下:
· 来自Server的报文流量约束为10240kbps,流量小于10240kbps时可以正常发送,流量超过10240kbps时则将违规报文的优先级设置为0后进行发送;
· 来自Host A的报文流量约束为2560kbps,流量小于2560kbps时可以正常发送,流量超过2560kbps时则丢弃违规报文;
对设备Device B的GigabitEthernet1/0/1和GigabitEthernet1/0/2接口收发报文有如下要求:
· Device B的GigabitEthernet1/0/1接口接收报文的总流量限制为20480kbps,如果超过流量限制则将违规报文丢弃;
· 经由Device B的GigabitEthernet1/0/2接口进入Internet的报文流量限制为10240kbps,如果超过流量限制则将违规报文丢弃。
(1) 配置设备Device A
# 配置ACL规则列表,分别匹配来源于Server和Host A的报文流。
[DeviceA] acl basic 2001
[DeviceA-acl-ipv4-basic-2001] rule permit source 1.1.1.1 0
[DeviceA-acl-ipv4-basic-2001] quit
[DeviceA] acl basic 2002
[DeviceA-acl-ipv4-basic-2002] rule permit source 1.1.1.2 0
[DeviceA-acl-ipv4-basic-2002] quit
# 创建流分类server,匹配Server发出的报文流。
[DeviceA] traffic classifier server
[DeviceA-classifier-server] if-match acl 2001
[DeviceA-classifier-server] quit
# 创建流分类host,匹配Host发出的报文流。
[DeviceA] traffic classifier host
[DeviceA-classifier-host] if-match acl 2002
[DeviceA-classifier-host] quit
# 创建流行为server,动作为流量监管,cir为10240kbps,对超出限制的报文(红色报文)将其DSCP优先级设置为0后发送。
[DeviceA] traffic behavior server
[DeviceA-behavior-server] car cir 10240 red remark-dscp-pass 0
[DeviceA-behavior-server] quit
# 创建流行为host,动作为流量监管,cir为2560kbps,由于默认对红色报文的处理方式就是丢弃,因此无需配置。
[DeviceA] traffic behavior host
[DeviceA-behavior-host] car cir 2560
[DeviceA-behavior-host] quit
# 创建QoS策略,命名为car,将流分类server和流行为server进行关联;将流分类host和流行为host进行关联。
[DeviceA] qos policy car
[DeviceA-qospolicy-car] classifier server behavior server
[DeviceA-qospolicy-car] classifier host behavior host
[DeviceA-qospolicy-car] quit
# 将QoS策略car应用到接口GigabitEthernet1/0/1的入方向上。
[DeviceA] interface gigabitethernet 1/0/1
[DeviceA-GigabitEthernet1/0/1] qos apply policy car inbound
(2) 配置设备Device B
# 配置高级ACL3001,匹配HTTP报文。
<DeviceB> system-view
[DeviceB] acl advanced 3001
[DeviceB-acl-adv-3001] rule permit tcp destination-port eq 80
[DeviceB-acl-adv-3001] quit
# 创建流分类http,匹配ACL 3001。
[DeviceB] traffic classifier http
[DeviceB-classifier-http] if-match acl 3001
[DeviceB-classifier-http] quit
# 创建流分类class,匹配所有报文。
[DeviceB] traffic classifier class
[DeviceB-classifier-class] if-match any
[DeviceB-classifier-class] quit
# 创建流行为car_inbound,动作为流量监管,cir为20480kbps,由于默认对红色报文的处理方式就是丢弃,因此无需配置。
[DeviceB] traffic behavior car_inbound
[DeviceB-behavior-car_inbound] car cir 20480
[DeviceB-behavior-car_inbound] quit
# 创建流行为car_outbound,动作为流量监管,cir为10240kbps。
[DeviceB] traffic behavior car_outbound
[DeviceB-behavior-car_outbound] car cir 10240
[DeviceB-behavior-car_outbound] quit
# 创建QoS策略,命名为car_inbound,将流分类class和流行为car_inbound进行关联。
[DeviceB] qos policy car_inbound
[DeviceB-qospolicy-car_inbound] classifier class behavior car_inbound
[DeviceB-qospolicy-car_inbound] quit
# 创建QoS策略,命名为car_outbound,将流分类http和流行为car_outbound进行关联。
[DeviceB] qos policy car_outbound
[DeviceB-qospolicy-car_outbound] classifier http behavior car_outbound
[DeviceB-qospolicy-car_outbound] quit
# 将QoS策略car_inbound应用到接口GigabitEthernet1/0/1的入方向上。
[DeviceB] interface gigabitethernet 1/0/1
[DeviceB-GigabitEthernet1/0/1] qos apply policy car_inbound inbound
# 将QoS策略car_outbound应用到接口GigabitEthernet1/0/2的出方向上。
[DeviceB] interface gigabitethernet 1/0/2
[DeviceB-GigabitEthernet1/0/2] qos apply policy car_outbound outbound
所谓拥塞,是指当前供给资源相对于正常转发处理需要资源的不足,从而导致服务质量下降的一种现象。
在复杂的Internet分组交换环境下,拥塞极为常见。以下图中的两种情况为例:
图5-1 流量拥塞示意图
拥塞有可能会引发一系列的负面影响:
· 拥塞增加了报文传输的延迟和抖动,可能会引起报文重传,从而导致更多的拥塞产生。
· 拥塞使网络的有效吞吐率降低,造成网络资源的利用率降低。
· 拥塞加剧会耗费大量的网络资源(特别是存储资源),不合理的资源分配甚至可能导致系统陷入资源死锁而崩溃。
在分组交换以及多用户业务并存的复杂环境下,拥塞又是不可避免的,因此必须采用适当的方法来解决拥塞。
拥塞管理的中心内容就是当拥塞发生时如何制定一个资源的调度策略,以决定报文转发的处理次序。拥塞管理的处理包括队列的创建、报文的分类、将报文送入不同的队列、队列调度等。
对于拥塞管理,一般采用队列技术,使用一个队列算法对流量进行分类,之后用某种优先级别算法将这些流量发送出去。
本系列交换机支持以下几种队列方式。
图5-2 SP队列示意图
SP队列是针对关键业务类型应用设计的。关键业务有一个重要的特点,即在拥塞发生时要求优先获得服务以减小响应的延迟。以图5-2为例,优先队列将接口的8个输出队列分成8类,依次为7、6、5、4、3、2、1、0队列,它们的优先级依次降低。
在队列调度时,SP严格按照优先级从高到低的次序优先发送较高优先级队列中的分组,当较高优先级队列为空时,再发送较低优先级队列中的分组。这样,将关键业务的分组放入较高优先级的队列,将非关键业务的分组放入较低优先级的队列,可以保证关键业务的分组被优先传送,非关键业务的分组在处理关键业务数据的空闲间隙被传送。
SP的缺点是:拥塞发生时,如果较高优先级队列中长时间有分组存在,那么低优先级队列中的报文将一直得不到服务。
图5-3 WRR队列示意图
WRR队列在队列之间进行轮流调度,保证每个队列都得到一定的服务时间。以接口有8个输出队列为例,WRR可为每个队列配置一个加权值(依次为w7、w6、w5、w4、w3、w2、w1、w0),加权值表示获取资源的比重。如一个100Mbps的接口,配置它的WRR队列的加权值为50、50、30、30、10、10、10、10(依次对应w7、w6、w5、w4、w3、w2、w1、w0),这样可以保证最低优先级队列至少获得5Mbps的带宽,解决了采用SP调度时低优先级队列中的报文可能长时间得不到服务的问题。
WRR队列还有一个优点是,虽然多个队列的调度是轮询进行的,但对每个队列不是固定地分配服务时间片——如果某个队列为空,那么马上换到下一个队列调度,这样带宽资源可以得到充分的利用。
WRR队列分为:
· 基本WRR队列:基本WRR队列包含多个队列,用户可以定制各个队列的权重,WRR按用户设定的参数进行加权轮询调度。
· 分组WRR队列:所有队列全部采用WRR调度,用户可以根据需要将输出队列划分为WRR优先级队列组1和WRR优先级队列组2。进行队列调度时,设备首先在优先级队列组1中进行轮询调度;优先级队列组1中没有报文发送时,设备才在优先级队列组2中进行轮询调度。
在分组WRR队列中,也可以配置队列加入SP分组,采用严格优先级调度算法。调度时先调度SP组,然后调度其他WRR优先组。
目前设备仅支持分组WRR队列,且分组WRR队列的输出队列仅存在于优先级队列组1中。
本节中的“接口”指的是二层以太网接口和三层以太网接口。三层以太网接口是指在以太网接口视图下通过port link-mode route命令切换为三层模式的以太网接口,有关以太网接口工作模式切换的操作,请参见“二层技术-以太网交换配置指导”中的“以太网接口配置”。
拥塞管理有下面几种配置方式:
· 接口队列配置方式:在接口视图下直接完成各队列的队列调度配置;
· 队列调度策略配置方式:在“5.4.2 配置队列调度策略”中进行详细介绍。
表5-1 拥塞管理配置任务简介
配置任务 |
说明 |
详细配置 |
|
接口队列配置方式 |
配置SP队列 |
必选其一 |
|
配置WRR队列 |
|||
配置SP+WRR队列 |
|||
队列调度策略配置方式 |
配置队列调度策略 |
必选 |
表5-2 SP队列配置过程
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
配置SP队列 |
qos sp |
缺省情况下,接口采用WRR调度算法,各队列按照每次轮询可发送的报文个数进行计算 |
表5-3 WRR队列配置过程
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
开启WRR队列 |
qos wrr weight |
缺省情况下,接口采用WRR调度算法,各队列按照每次轮询可发送的报文个数进行计算 |
配置WRR队列的参数 |
qos wrr queue-id group 1 weight schedule-value |
缺省情况下,所有队列均处于WRR调度组1中,调度权重从0到7分别为1、2、3、4、5、9、13、15,各队列按照每次轮询可发送的报文个数进行计算 |
表5-4 SP+WRR队列配置过程
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
使能WRR队列 |
qos wrr weight |
缺省情况下,接口采用WRR调度算法,各队列按照每次轮询可发送的报文个数进行计算 |
将部分队列加入SP调度组 |
qos wrr queue-id group sp |
缺省情况下,当接口使用WRR队列时,所有队列均处于WRR调度组1中 |
将部分队列加入WRR调度组 |
qos wrr queue-id group 1 weight schedule-value |
缺省情况下,所有队列均处于WRR调度组1中,各队列的权重分别为1、2、3、4、5、9、13、15 |
(1) 组网需求
· 配置接口GigabitEthernet1/0/1使用SP+WRR队列调度算法,WRR队列调度权重为报文个数。
· 配置接口GigabitEthernet1/0/1上的4~7队列属于SP调度组。
· 配置接口GigabitEthernet1/0/1上的0、1、2、3队列属于WRR调度组1,权重分别为1、2、1、3。
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置接口GigabitEthernet1/0/1使用SP+WRR队列调度算法。
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos wrr weight
[Sysname-GigabitEthernet1/0/1] qos wrr 4 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 5 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 6 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 7 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 0 group 1 weight 1
[Sysname-GigabitEthernet1/0/1] qos wrr 1 group 1 weight 2
[Sysname-GigabitEthernet1/0/1] qos wrr 2 group 1 weight 1
[Sysname-GigabitEthernet1/0/1] qos wrr 3 group 1 weight 3
队列调度策略配置方式是在一个策略中配置各个队列的调度参数,最后通过在接口应用该策略来实现拥塞管理功能。
队列调度策略中的队列支持两种调度方式:SP、WRR。在一个队列调度策略中支持SP和WRR的混合配置。混合配置时,SP、WRR分组之间是严格优先级调度,调度优先级按队列号从大到小依次降低。SP和WRR混合配置时调度关系如图5-4所示。
图5-4 SP和WRR混合配置图
· 队列7(即图中的Q7,下同)优先级最高,该队列的报文优先发送。
· 队列6优先级次之,队列7为空时发送本队列的报文。
· 队列3、4、5之间按照权重轮询调度,在队列7、6为空时调度WRR分组1。
· 队列1、2之间按照权重轮询调度,在队列7、6、5、4、3为空时调度WRR分组2。
· 队列0优先级最低,其它队列的报文全部发送完毕后调度本队列。
本节中的“接口”指的是二层以太网接口和三层以太网接口。三层以太网接口是指在以太网接口视图下通过port link-mode route命令切换为三层模式的以太网接口,有关以太网接口工作模式切换的操作,请参见“二层技术-以太网交换配置指导”中的“以太网接口配置”。
配置队列调度策略时,用户首先要创建一个队列调度策略,然后进入队列调度策略视图进行队列调度参数的相关配置,最后将队列调度策略应用到接口。
队列调度策略中队列的调度参数支持动态修改,从而方便修改已经应用的队列调度策略。
表5-5 配置队列调度策略
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
创建队列调度策略,并进入队列调度策略视图 |
qos qmprofile profile-name |
缺省情况下,不存在用户自定义的队列调度策略 |
|
配置队列调度参数 |
配置严格优先级调度 |
queue queue-id sp |
缺省情况下,队列调度策略的内容是所有队列均采用SP方式调度 一个队列只能配置一种队列调度方式 同一个队列调度策略中的不同队列,可以配置不同的调度方式,需要注意的是:可以将全部队列配置为同种调度方式,也可以配置为SP+WRR方式 |
配置加权轮询调度 |
queue queue-id wrr group 1 weight schedule-value |
||
退回系统视图 |
quit |
- |
|
进入接口视图 |
interface interface-type interface-number |
- |
|
在接口上应用队列调度策略 |
qos apply qmprofile profile-name |
缺省情况下,接口上未应用队列调度策略 每个接口只能应用一个队列调度策略 |
接口GigabitEthernet1/0/1的队列调度方式如下:
· 队列7优先级最高,该队列报文优先发送。
· 队列0~6之间按照权重轮询调度,属于WRR分组,使用报文个数作为调度权重,分别为2、1、2、4、6、8、10,在队列7为空时调度WRR分组。
# 进入系统视图。
<Sysname> system-view
# 创建队列调度策略qm1。
[Sysname] qos qmprofile qm1
[Sysname-qmprofile-qm1]
# 配置队列7为SP队列。
[Sysname-qmprofile-qm1] queue 7 sp
# 配置队列0~6属于WRR分组1,使用报文个数作为调度权重,分别为2、1、2、4、6、8、10。
[Sysname-qmprofile-qm1] queue 0 wrr group 1 weight 2
[Sysname-qmprofile-qm1] queue 1 wrr group 1 weight 1
[Sysname-qmprofile-qm1] queue 2 wrr group 1 weight 2
[Sysname-qmprofile-qm1] queue 3 wrr group 1 weight 4
[Sysname-qmprofile-qm1] queue 4 wrr group 1 weight 6
[Sysname-qmprofile-qm1] queue 5 wrr group 1 weight 8
[Sysname-qmprofile-qm1] queue 6 wrr group 1 weight 10
[Sysname-qmprofile-qm1] quit
# 把队列调度策略qm1应用到接口GigabitEthernet1/0/1上。
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos apply qmprofile qm1
配置完成后,接口GigabitEthernet1/0/1按指定方式进行队列调度。
在完成上述配置后,在任意视图下执行display命令可以显示配置后队列的运行情况,通过查看显示信息验证配置的效果。
表5-6 拥塞管理的显示和维护
操作 |
命令 |
显示SP队列 |
display qos queue sp interface [ interface-type interface-number ] |
显示WRR队列的配置 |
display qos queue wrr interface [ interface-type interface-number ] |
显示队列调度策略的配置信息 |
display qos qmprofile configuration [ profile-name ] [ slot slot-number ] |
显示接口的队列调度策略应用信息 |
display qos qmprofile interface [ interface-type interface-number ] |
显示接口队列统计信息 |
display qos queue-statistics interface [ interface-type interface-number ] outbound |
清除接口队列统计信息(本命令的详细情况请参见“接口管理命令参考/以太网接口”) |
reset counters interface [ interface-type [ interface-number | interface-number.subnumber ] ] |
流量过滤是指对符合流分类的流进行过滤的动作。
例如,可以根据网络的实际情况禁止从某个源IP地址发送的报文通过。
表6-1 配置流量过滤
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
创建一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,不存在类 |
|
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,未定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
|
退回系统视图 |
quit |
- |
|
创建一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,不存在流行为 |
|
配置流量过滤动作 |
filter { deny | permit } |
缺省情况下,未配置流量过滤动作 |
|
退回系统视图 |
quit |
- |
|
创建一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,不存在策略 |
|
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name [ insert-before before-classifier-name ] |
缺省情况下,没有为类指定流行为 |
|
退回系统视图 |
quit |
- |
|
应用QoS策略 |
基于接口 |
必选其一 缺省情况下,未应用QoS策略 |
|
基于VLAN |
|||
基于全局 |
|||
基于上线用户 |
|||
(可选)显示流量过滤的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] |
display命令可以在任意视图下执行 |
Host通过接口GigabitEthernet1/0/1接入设备Device。
配置流量过滤功能,对接口GigabitEthernet1/0/1接收的源端口号等于21的TCP报文进行丢弃。
图6-1 流量过滤配置组网图
# 定义高级ACL 3000,匹配源端口号等于21的数据流。
<Device> system-view
[Device] acl advanced 3000
[Device-acl-ipv4-adv-3000] rule 0 permit tcp source-port eq 21
[Device-acl-ipv4-adv-3000] quit
# 定义类classifier_1,匹配高级ACL 3000。
[Device] traffic classifier classifier_1
[Device-classifier-classifier_1] if-match acl 3000
[Device-classifier-classifier_1] quit
# 定义流行为behavior_1,动作为流量过滤(deny),对数据包进行丢弃。
[Device] traffic behavior behavior_1
[Device-behavior-behavior_1] filter deny
[Device-behavior-behavior_1] quit
# 定义策略policy,为类classifier_1指定流行为behavior_1。
[Device] qos policy policy
[Device-qospolicy-policy] classifier classifier_1 behavior behavior_1
[Device-qospolicy-policy] quit
# 将策略policy应用到接口GigabitEthernet1/0/1的入方向上。
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos apply policy policy inbound
重标记是将报文的优先级或者标志位进行设置,重新定义报文的优先级等。例如,对于IP报文来说,可以利用重标记对IP报文中的IP优先级或DSCP值进行重新设置,控制IP报文的转发。
重标记动作的配置,可以通过与类关联,将原来报文的优先级或标志位重新进行标记。
重标记可以和优先级映射功能配合使用,具体请参见优先级映射章节。
表7-1 配置重标记
操作 |
命令 |
说明 |
||
进入系统视图 |
system-view |
- |
||
创建一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,不存在类 |
||
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,未定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
||
退回系统视图 |
quit |
- |
||
创建一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,不存在流行为 |
||
重新标记报文的动作 |
重新标记报文的802.1p优先级或配置内外层标签优先级复制功能 |
remark [ green | red | yellow ] dot1p dot1p-value remark dot1p customer-dot1p-trust |
必选其一 缺省情况下,未配置重新标记报文的动作 命令remark drop-precedence仅支持应用在入方向 |
|
重新标记报文的丢弃优先级 |
remark drop-precedence drop-precedence-value |
|||
重新标记报文的DSCP值 |
remark [ green | red | yellow ] dscp dscp-value |
|||
重新标记报文的IP优先级 |
remark ip-precedence ip-precedence-value |
|||
重新标记报文的本地优先级 |
remark local-precedence local-precedence-value |
|||
重标记报文的SVLAN |
remark service-vlan-id vlan-id |
|||
退回系统视图 |
quit |
- |
||
创建一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,不存在策略 |
||
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name [ insert-before before-classifier-name ] |
缺省情况下,没有为类指定流行为 |
||
退回系统视图 |
quit |
- |
||
应用QoS策略 |
基于接口 |
必选其一 缺省情况下,未应用QoS策略 |
||
基于VLAN |
||||
基于全局 |
||||
基于上线用户 |
||||
(可选)显示重标记的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] |
display命令可以在任意视图下执行 |
||
公司企业网通过Device实现互连。网络环境描述如下:
· Host A和Host B通过接口GigabitEthernet1/0/1接入Device;
· 数据库服务器、邮件服务器和文件服务器通过接口GigabitEthernet1/0/2接入Device。
通过配置重标记功能,Device上实现如下需求:
· 优先处理Host A和Host B访问数据库服务器的报文;
· 其次处理Host A和Host B访问邮件服务器的报文;
· 最后处理Host A和Host B访问文件服务器的报文。
图7-1 重标记配置组网图
# 定义高级ACL 3000,对目的IP地址为192.168.0.1的报文进行分类。
<Device> system-view
[Device] acl advanced 3000
[Device-acl-ipv4-adv-3000] rule permit ip destination 192.168.0.1 0
[Device-acl-ipv4-adv-3000] quit
# 定义高级ACL 3001,对目的IP地址为192.168.0.2的报文进行分类。
[Device] acl advanced 3001
[Device-acl-ipv4-adv-3001] rule permit ip destination 192.168.0.2 0
[Device-acl-ipv4-adv-3001] quit
# 定义高级ACL 3002,对目的IP地址为192.168.0.3的报文进行分类。
[Device] acl advanced 3002
[Device-acl-ipv4-adv-3002] rule permit ip destination 192.168.0.3 0
[Device-acl-ipv4-adv-3002] quit
# 定义类classifier_dbserver,匹配高级ACL 3000。
[Device] traffic classifier classifier_dbserver
[Device-classifier-classifier_dbserver] if-match acl 3000
[Device-classifier-classifier_dbserver] quit
# 定义类classifier_mserver,匹配高级ACL 3001。
[Device] traffic classifier classifier_mserver
[Device-classifier-classifier_mserver] if-match acl 3001
[Device-classifier-classifier_mserver] quit
# 定义类classifier_fserver,匹配高级ACL 3002。
[Device] traffic classifier classifier_fserver
[Device-classifier-classifier_fserver] if-match acl 3002
[Device-classifier-classifier_fserver] quit
# 定义流行为behavior_dbserver,动作为重标记报文的本地优先级为4。
[Device] traffic behavior behavior_dbserver
[Device-behavior-behavior_dbserver] remark local-precedence 4
[Device-behavior-behavior_dbserver] quit
# 定义流行为behavior_mserver,动作为重标记报文的本地优先级为3。
[Device] traffic behavior behavior_mserver
[Device-behavior-behavior_mserver] remark local-precedence 3
[Device-behavior-behavior_mserver] quit
# 定义流行为behavior_fserver,动作为重标记报文的本地优先级为2。
[Device] traffic behavior behavior_fserver
[Device-behavior-behavior_fserver] remark local-precedence 2
[Device-behavior-behavior_fserver] quit
# 定义策略policy_server,为类指定流行为。
[Device] qos policy policy_server
[Device-qospolicy-policy_server] classifier classifier_dbserver behavior behavior_dbserver
[Device-qospolicy-policy_server] classifier classifier_mserver behavior behavior_mserver
[Device-qospolicy-policy_server] classifier classifier_fserver behavior behavior_fserver
[Device-qospolicy-policy_server] quit
# 将策略policy_server应用到接口GigabitEthernet1/0/1上。
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos apply policy policy_server inbound
[Device-GigabitEthernet1/0/1] quit
Nest功能用来为符合流分类的流添加一层VLAN Tag,使携带该VLAN Tag的报文通过对应VLAN。例如,为从用户网络进入运营商网络的VLAN报文添加外层VLAN Tag,使其携带运营商网络分配的VLAN Tag穿越运营商网络。
表8-1 配置Nest
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
创建一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,不存在类 |
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,未定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
退回系统视图 |
quit |
- |
创建一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,不存在流行为 |
配置添加VLAN Tag的动作 |
nest top-most vlan vlan-id |
缺省情况下,未配置添加VLAN Tag的动作 |
退回系统视图 |
quit |
- |
创建一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,不存在策略 |
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name [ insert-before before-classifier-name ] |
缺省情况下,没有为类指定流行为 |
退回系统视图 |
quit |
- |
基于接口应用QoS策略 |
必选 如果该接口已使能QinQ功能,且QoS策略中配置了匹配VLAN Tag VLAN ID的规则,则该接口必须允许VLAN ID匹配的报文带Tag通过,才能保证QinQ功能和Nest同时生效,否则Nest将不会生效 |
· VPN A中的Site 1和Site 2是某公司的两个分支机构,利用VLAN 5承载业务。由于分处不同地域,这两个分支机构采用了服务提供商(SP)所提供的VPN接入服务,SP将VLAN 100分配给这两个分支机构使用。
· 该公司希望其下属的这两个分支机构可以跨越SP的网络实现互通。
图8-1 Nest配置组网图
(1) 配置PE 1
# 定义类test的匹配规则为:匹配从GigabitEthernet1/0/1收到的VLAN ID值为5的报文。
<PE1> system-view
[PE1] traffic classifier test
[PE1-classifier-test] if-match service-vlan-id 5
[PE1-classifier-test] quit
# 在流行为test上配置如下动作:添加VLAN ID为100的外层VLAN Tag。
[PE1] traffic behavior test
[PE1-behavior-test] nest top-most vlan 100
[PE1-behavior-test] quit
# 在策略test中为类test指定采用流行为test。
[PE1] qos policy test
[PE1-qospolicy-test] classifier test behavior test
[PE1-qospolicy-test] quit
# 配置下行接口GigabitEthernet1/0/1为Hybrid接口且允许VLAN 100的报文不携带VLAN Tag通过。
[PE1] interface gigabitethernet 1/0/1
[PE1-GigabitEthernet1/0/1] port link-type hybrid
[PE1-GigabitEthernet1/0/1] port hybrid vlan 100 untagged
# 在下行接口GigabitEthernet1/0/1的入方向上应用上行策略test。
[PE1-GigabitEthernet1/0/1] qos apply policy test inbound
[PE1-GigabitEthernet1/0/1] quit
# 配置上行接口GigabitEthernet1/0/2为Trunk接口且允许VLAN 100通过。
[PE1] interface gigabitethernet 1/0/2
[PE1-GigabitEthernet1/0/2] port link-type trunk
[PE1-GigabitEthernet1/0/2] port trunk permit vlan 100
[PE1-GigabitEthernet1/0/2] quit
(2) 配置PE 2
PE 2的配置与PE 1完全一致,这里不再赘述。
流量重定向就是将符合流分类的流重定向到其他地方进行处理。
目前支持的流量重定向包括以下几种:
· 重定向到CPU:对于需要CPU处理的报文,可以通过配置上送给CPU。
· 重定向到接口:对于收到需要由某个接口处理的报文时,可以通过配置重定向到此接口。
表9-1 配置流量重定向
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
创建一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,不存在类 |
|
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,未定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
|
退回系统视图 |
quit |
- |
|
创建一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,不存在流行为 |
|
配置流量重定向动作 |
redirect { cpu | interface interface-type interface-number } |
缺省情况下,未配置流量重定向动作 在同一个流行为中多次执行本命令,最后一次执行的命令生效 配置重定向到指定的以太网接口后,如果该以太网接口所在的接口模块扩展卡被拔出,设备将不显示流行为下的重定向到该以太网接口的配置;当接口模块扩展卡重新插回设备后,此时设备可以显示流行为下的重定向到该以太网接口的配置 |
|
退回系统视图 |
quit |
- |
|
创建一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,不存在策略 |
|
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name [ insert-before before-classifier-name ] |
缺省情况下,没有为类指定流行为 |
|
退回系统视图 |
quit |
- |
|
应用QoS策略 |
基于接口 |
必选其一 缺省情况下,未应用QoS策略 基于上线用户应用QoS策略时,如果配置重定向到接口,则需确保redirect命令中指定的接口与重定向报文进入设备的接口属于同一VLAN 通过QoS策略方式配置流量重定向时,该策略仅应用在入方向时流量重定向动作才会生效 |
|
基于VLAN |
|||
基于全局 |
|||
基于上线用户 |
|||
(可选)显示流量重定向的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] |
display命令可以在任意视图下执行 |
网络环境描述如下:
· Device A通过两条链路与Device B连接,同时Device A和Device B各自连接其他的设备;
· Device A上的接口GigabitEthernet1/0/2和Device B上的接口GigabitEthernet1/0/2属于VLAN 200;
· Device A上的接口GigabitEthernet1/0/3和Device B上的接口GigabitEthernet1/0/3属于VLAN 201;
· Device A上接口Vlan-interface200的IP地址为200.1.1.1/24,接口Vlan-interface201的IP地址为201.1.1.1/24;
· Device B上接口Vlan-interface200的IP地址为200.1.1.2/24,接口Vlan-interface201的IP地址为201.1.1.2/24。
配置重定向至接口,满足如下需求:
· 将Device A的接口GigabitEthernet1/0/1接收到的源IP地址为2.1.1.1的报文转发至GigabitEthernet1/0/2;
· 将Device A的接口GigabitEthernet1/0/1接收到的源IP地址为2.1.1.2的报文转发至GigabitEthernet1/0/3;
· 对于Device A的接口GigabitEthernet1/0/1接收到的其它报文,按照查找路由表的方式进行转发。
图9-1 重定向至接口配置组网图
# 定义基本ACL 2000,对源IP地址为2.1.1.1的报文进行分类。
<DeviceA> system-view
[DeviceA] acl basic 2000
[DeviceA-acl-ipv4-basic-2000] rule permit source 2.1.1.1 0
[DeviceA-acl-ipv4-basic-2000] quit
# 定义基本ACL 2001,对源IP地址为2.1.1.2的报文进行分类。
[DeviceA] acl basic 2001
[DeviceA-acl-ipv4-basic-2001] rule permit source 2.1.1.2 0
[DeviceA-acl-ipv4-basic-2001] quit
# 定义类classifier_1,匹配基本ACL 2000。
[DeviceA] traffic classifier classifier_1
[DeviceA-classifier-classifier_1] if-match acl 2000
[DeviceA-classifier-classifier_1] quit
# 定义类classifier_2,匹配基本ACL 2001。
[DeviceA] traffic classifier classifier_2
[DeviceA-classifier-classifier_2] if-match acl 2001
[DeviceA-classifier-classifier_2] quit
# 定义流行为behavior_1,动作为重定向至GigabitEthernet1/0/2。
[DeviceA] traffic behavior behavior_1
[DeviceA-behavior-behavior_1] redirect interface gigabitethernet 1/0/2
[DeviceA-behavior-behavior_1] quit
# 定义流行为behavior_2,动作为重定向至GigabitEthernet1/0/3。
[DeviceA] traffic behavior behavior_2
[DeviceA-behavior-behavior_2] redirect interface gigabitethernet 1/0/3
[DeviceA-behavior-behavior_2] quit
# 定义策略policy,为类classifier_1指定流行为behavior_1,为类classifier_2指定流行为behavior_2。
[DeviceA] qos policy policy
[DeviceA-qospolicy-policy] classifier classifier_1 behavior behavior_1
[DeviceA-qospolicy-policy] classifier classifier_2 behavior behavior_2
[DeviceA-qospolicy-policy] quit
# 将策略policy应用到接口GigabitEthernet1/0/1的入方向上。
[DeviceA] interface gigabitethernet 1/0/1
[DeviceA-GigabitEthernet1/0/1] qos apply policy policy inbound
全局CAR是在全局创建的一种策略,所有应用该策略的数据流将共同接受全局CAR的监管。全局CAR分为聚合CAR和分层CAR,目前设备仅支持聚合CAR。
聚合CAR是指能够对多个业务流使用同一个CAR进行流量监管,即如果多个接口应用同一聚合CAR,则这多个接口的流量之和必须在此聚合CAR设定的流量监管范围之内。
分层CAR是一种更灵活的流量监管策略,用户可以在为每个流单独配置CAR动作(或聚合CAR)的基础上,再通过分层CAR对多个流的流量总和进行限制。
分层CAR与普通CAR(或聚合CAR)的结合应用有两种模式:
· and:在该模式下,对于多条数据流应用同一个分层CAR,必须每条流满足各自的普通CAR(或聚合CAR)配置,同时各流量之和又满足分层CAR的配置,流量才能正常通过。and模式适用于严格限制流量带宽的环境,分层CAR的限速配置通常小于各流量自身CAR的限速值之和。例如对于Internet流量,可以使用普通CAR将数据流1和数据流2各自限速为240kbps,再使用分层CAR限制总流量为320kbps。当不存在数据流1时,数据流2可以用达到自身限速上限的速率访问Internet,如果存在数据流1,则两个数据流不能超过各自限速且总速率不能超过320kbps。
· or:在该模式下,对于多条数据流应用同一个分层CAR,只要每条流满足各自的普通CAR(或聚合CAR)配置或者各流量之和满足分层CAR配置,流量即可正常通过。or模式适用于保证高优先级业务带宽的环境,分层CAR的限速值通常等于或大于各流量自身的限速值之和。例如对于视频流量,使用普通CAR将数据流1和数据流2各自限速240kbps,再使用分层CAR限制总流量为560kbps,则当数据流1的流量不足240kbps时,即使数据流2的流量达到了320kbps,仍然可以正常通过。
两种模式可以结合起来使用,达到合理利用带宽的效果。例如,存在一条视频流和一条数据流,使用普通CAR将数据流限速1024kbps、视频流限速2048kbps。连接视频流接口采用or模式CAR限速3072kbps,因为可能存在多台视频设备同时上线出现的突发流量,当视频设备流量速率超出2048kbps时,如果总体流量资源仍有剩余(即数据流速率在1024kbps以内),这时视频流可以临时借用数据流的带宽;同时,连接数据流接口采用and模式CAR限速3072kbps,确保数据流量不能超出自身限速的1024kbps。
表10-1 配置聚合CAR
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置聚合CAR |
qos car car-name aggregative cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ green action | red action | yellow action ] * qos car car-name aggregative cir committed-information-rate [ cbs committed-burst-size ] pir peak-information-rate [ ebs excess-burst-size ] [ green action | red action | yellow action ] * |
两条命令任选其一进行配置 缺省情况下,未配置聚合CAR |
进入流行为视图 |
traffic behavior behavior-name |
- |
在流行为中应用聚合CAR动作 |
car name car-name |
缺省情况下,流行为中未应用聚合CAR动作 |
在完成上述配置后,在任意视图下执行display命令可以显示配置后全局CAR的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除全局CAR统计信息。
表10-2 全局CAR显示和维护
操作 |
命令 |
显示全局CAR的配置和统计信息 |
display qos car name [ car-name ] |
清除全局CAR的统计信息 |
reset qos car name [ car-name ] |
流量统计就是通过与类关联,对符合匹配规则的流进行统计,统计报文数或字节数。例如,可以统计从某个源IP地址发送的报文,然后管理员对统计信息进行分析,根据分析情况采取相应的措施。
表11-1 配置流量统计
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
创建一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,不存在类 |
|
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,未定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
|
退回系统视图 |
quit |
- |
|
创建一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,不存在流行为 |
|
为流行为配置流量统计动作 |
accounting { byte | packet } |
缺省情况下,未配置流量统计动作 |
|
退回系统视图 |
quit |
- |
|
创建一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,不存在策略 |
|
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name [ insert-before before-classifier-name ] |
缺省情况下,没有为类指定流行为 |
|
退回系统视图 |
quit |
- |
|
应用QoS策略 |
基于接口 |
必选其一 缺省情况下,未应用QoS策略 |
|
基于VLAN |
|||
基于全局 |
|||
基于上线用户 |
|||
(可选)显示流量统计的相关配置信息 |
display qos policy interface [ interface-type interface-number ] [ inbound | outbound ] display qos policy global [ slot slot-number ] [ inbound | outbound ] display qos vlan-policy { name policy-name | vlan [ vlan-id ] } [ slot slot-number ] [ inbound | outbound ] display qos policy user-profile [ name profile-name ] [ user-id user-id ] [ slot slot-number ] [ inbound | outbound ] |
display命令可以在任意视图下执行 |
用户网络描述如下:Host通过接口GigabitEthernet1/0/1接入设备Device。
配置流量统计功能,对接口GigabitEthernet1/0/1接收的源IP地址为1.1.1.1/24的报文进行统计。
图11-1 流量统计配置组网图
# 定义基本ACL 2000,对源IP地址为1.1.1.1的报文进行分类。
<Device> system-view
[Device] acl basic 2000
[Device-acl-ipv4-basic-2000] rule permit source 1.1.1.1 0
[Device-acl-ipv4-basic-2000] quit
# 定义类classifier_1,匹配基本ACL 2000。
[Device] traffic classifier classifier_1
[Device-classifier-classifier_1] if-match acl 2000
[Device-classifier-classifier_1] quit
# 定义流行为behavior_1,动作为流量统计。
[Device] traffic behavior behavior_1
[Device-behavior-behavior_1] accounting packet
[Device-behavior-behavior_1] quit
# 定义策略policy,为类classifier_1指定流行为behavior_1。
[Device] qos policy policy
[Device-qospolicy-policy] classifier classifier_1 behavior behavior_1
[Device-qospolicy-policy] quit
# 将策略policy应用到接口GigabitEthernet1/0/1的入方向上。
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos apply policy policy inbound
[Device-GigabitEthernet1/0/1] quit
# 查看配置后流量统计的情况。
[Device] display qos policy interface gigabitethernet 1/0/1
Interface: GigabitEthernet1/0/1
Direction: Inbound
Policy: policy
Classifier: classifier_1
Operator: AND
Rule(s) :
If-match acl 2000
Behavior: behavior_1
Accounting enable:
28529 (Packets)
表12-1 附录 A 缩略语表
缩略语 |
英文全名 |
中文解释 |
AF |
Assured Forwarding |
确保转发 |
BE |
Best Effort |
尽力转发 |
BQ |
Bandwidth Queuing |
带宽队列 |
CAR |
Committed Access Rate |
承诺访问速率 |
CBS |
Committed Burst Size |
承诺突发尺寸 |
CE |
Customer Edge |
用户边缘设备 |
CIR |
Committed Information Rate |
承诺信息速率 |
CQ |
Custom Queuing |
定制队列 |
DAR |
Deeper Application Recognition |
深度应用识别 |
DiffServ |
Differentiated Service |
区分服务 |
DoS |
Denial of Service |
拒绝服务 |
DSCP |
Differentiated Services Code Point |
区分服务编码点 |
EACL |
Enhanced ACL |
增强型ACL |
EBS |
Excess Burst Size |
超出突发尺寸 |
ECN |
Explicit Congestion Notification |
显示拥塞通知 |
EF |
Expedited Forwarding |
加速转发 |
FEC |
Forwarding Equivalance Class |
转发等价类 |
FIFO |
First in First out |
先入先出 |
FQ |
Fair Queuing |
公平队列 |
GTS |
Generic Traffic Shaping |
通用流量整形 |
IntServ |
Integrated Service |
综合服务 |
ISP |
Internet Service Provider |
互联网服务提供商 |
LFI |
Link Fragmentation and Interleaving |
链路分片与交叉 |
LLQ |
Low Latency Queuing |
低时延队列 |
LR |
Line Rate |
限速 |
LSP |
Label Switched Path |
标签交换路径 |
P2P |
Peer-to-Peer |
对等 |
PE |
Provider Edge |
服务提供商网络边缘 |
PHB |
Per-hop Behavior |
单中继段行为 |
PIR |
Peak Information Rate |
峰值信息速率 |
PQ |
Priority Queuing |
优先队列 |
QoS |
Quality of Service |
服务质量 |
RED |
Random Early Detection |
随机早期检测 |
RSVP |
Resource Reservation Protocol |
资源预留协议 |
RTP |
Real-time Transport Protocol |
实时传输协议 |
SLA |
Service Level Agreement |
服务水平协议 |
SP |
Strict Priority |
严格优先级队列 |
TE |
Traffic Engineering |
流量工程 |
ToS |
Type of Service |
服务类型 |
TP |
Traffic Policing |
流量监管 |
TS |
Traffic Shaping |
流量整形 |
VoIP |
Voice over IP |
在IP网络上传送语音 |
VSI |
Virtual Station Interface |
虚拟服务器接口 |
WRR |
Weighted Round Robin |
加权轮询队列 |
dscp-dscp映射表的缺省映射关系为:映射输出值等于输入值。
表12-2 dot1p-lp缺省映射关系
映射输入索引 |
dot1p-lp映射 |
dot1p |
lp |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
3 |
4 |
4 |
5 |
5 |
6 |
6 |
7 |
7 |
表12-3 dscp-dp、dscp-dot1p缺省映射关系
映射输入索引 |
dscp-dp映射 |
dscp-dot1p映射 |
dscp |
dp |
dot1p |
0~7 |
0 |
0 |
8~15 |
0 |
1 |
16~23 |
0 |
2 |
24~31 |
0 |
3 |
32~39 |
0 |
4 |
40~47 |
0 |
5 |
48~55 |
0 |
6 |
56~63 |
0 |
7 |
图12-1 ToS和DS域
如图12-1所示,IP报文头的ToS字段有8个bit,其中前3个bit表示的就是IP优先级,取值范围为0~7。RFC 2474中,重新定义了IP报文头部的ToS域,称之为DS(Differentiated Services,差分服务)域,其中DSCP优先级用该域的前6位(0~5位)表示,取值范围为0~63,后2位(6、7位)是保留位。
表12-4 IP优先级说明
IP优先级(十进制) |
IP优先级(二进制) |
关键字 |
0 |
000 |
routine |
1 |
001 |
priority |
2 |
010 |
immediate |
3 |
011 |
flash |
4 |
100 |
flash-override |
5 |
101 |
critical |
6 |
110 |
internet |
7 |
111 |
network |
表12-5 DSCP优先级说明
DSCP优先级(十进制) |
DSCP优先级(二进制) |
关键字 |
46 |
101110 |
ef |
10 |
001010 |
af11 |
12 |
001100 |
af12 |
14 |
001110 |
af13 |
18 |
010010 |
af21 |
20 |
010100 |
af22 |
22 |
010110 |
af23 |
26 |
011010 |
af31 |
28 |
011100 |
af32 |
30 |
011110 |
af33 |
34 |
100010 |
af41 |
36 |
100100 |
af42 |
38 |
100110 |
af43 |
8 |
001000 |
cs1 |
16 |
010000 |
cs2 |
24 |
011000 |
cs3 |
32 |
100000 |
cs4 |
40 |
101000 |
cs5 |
48 |
110000 |
cs6 |
56 |
111000 |
cs7 |
0 |
000000 |
be(default) |
802.1p优先级位于二层报文头部,适用于不需要分析三层报头,而需要在二层环境下保证QoS的场合。
图12-2 带有802.1Q标签头的以太网帧
如图12-2所示,4个字节的802.1Q标签头包含了2个字节的TPID(Tag Protocol Identifier,标签协议标识符)和2个字节的TCI(Tag Control Information,标签控制信息),TPID取值为0x8100,图12-3显示了802.1Q标签头的详细内容,Priority字段就是802.1p优先级。之所以称此优先级为802.1p优先级,是因为有关这些优先级的应用是在802.1p规范中被详细定义的。
图12-3 802.1Q标签头
表12-6 802.1p优先级说明
802.1p优先级(十进制) |
802.1p优先级(二进制) |
关键字 |
0 |
000 |
best-effort |
1 |
001 |
background |
2 |
010 |
spare |
3 |
011 |
excellent-effort |
4 |
100 |
controlled-load |
5 |
101 |
video |
6 |
110 |
voice |
7 |
111 |
network-management |
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!